
Zadania zebrane - Krzysztof Łapsa 

 

Zad. 1  

Dane są dwa wektory:  

kibkjia
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Oblicz: 

a) długość każdego wektora  

b) ich sumę 

c) iloczyn skalarny ba


  

d) kąt zawarty między wektorami, 

e) iloczyn wektorowy ba


  

 

Przed rozwiązaniem należy zapoznać się z podstawami rachunku wektorowego, który znajduje się 

na początku materiałów przesłanych Państwu przeze mnie. 

Rozwiązanie 
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Zad. 2 

 

Lotnik, który leci na wysokości h w kierunku poziomym z prędkością Vx, puszcza ładunek, który 

ma upaść na Ziemię w punkcie A. Wyznacz: pod jakim kątem lotnik powinien widzieć cel w chwili 

puszczania ładunku, wartość prędkości końcowej ładunku (tuż przed upadkiem na Ziemię) oraz kąt 

upadku na Ziemię. Przyspieszenie ziemskie jest dane - g. Wykonaj rysunek, zaznacz wektory 

prędkości i przyspieszenia w chwili początkowej i końcowej. 

------------------------------------------------------------------------------------------------------------------------ 

 

 W zadaniu mamy do czynienia z rzutem poziomym (szczególny przypadek rzutu ukośnego) 

w polu grawitacyjnym przy powierzchni Ziemi. Jeżeli pominiemy siły oporu powietrza możemy 

stwierdzić, że jedyną siłą występującą podczas spadku swobodnego ładunku jest siła grawitacji z 

którą jest związane przyspieszenie ziemskie g. Zadanie można by rozwiązywać analizując zmianę 

wektora położenia ładunku, ale znacznie prostsze jest rozpatrywanie tego ruchu rozkładając go na 

ruch poziomy i pionowy. 

 W ruchu w kierunku poziomym nie ma żadnej siły (rzut wektora siły grawitacji na kierunek 

osi x jest równy 0) a więc ciało w poziomie nie może przyspieszyć (I zasada dynamiki Newtona). 

Stąd możemy założyć, że porusza się ono w poziomie ruchem jednostajnym. 

 W kierunku pionowym ciało będzie poruszało się ruchem jednostajnie przyspieszonym 

(wektor przyspieszenia ziemskiego g w trakcie całego ruchu będzie skierowany pionowo w dół). 

 



 
  

Dane: h, Vx, g 

Szukane:  VX,  

 

Rozwiązanie 

Światło odbite od celu (pkt. A) dociera do oczu lotnika pod kątem  (kąt pod którym lotnik 

powinien widzieć cel). Aby wyznaczyć ten kąt posłużymy się funkcją trygonometryczną tangens 

z

h
tg = .   

Zasięg lotu z nie jest znany, ale wiemy, że wzdłuż osi x ciało porusza się ruchem jednostajnym 

prostoliniowym (brak siły wzdłuż osi x) stąd możemy zapisać 

 

tVz X = . 

t - to czas lotu wzdłuż osi x. Jak długo będzie leciał ładunek wzdłuż osi x? ... aż nie spadnie. 

Czas spadania obliczymy przekształcając wzór na drogę w ruchu jednostajnie przyspieszonym 
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Wektor prędkości końcowej ładunku (tuż przed upadkiem na Ziemię) jest sumą wektora prędkości 

poziomej i wektora prędkości końcowej w kierunku osi y. 
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Wartość wektora prędkości końcowej ładunku obliczymy posługując się twierdzeniem Pitagorasa 
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Prędkość VY wyliczymy, korzystając ze wzoru na prędkość w ruchu jednostajnie przyspieszonym 

(spadek swobodny) 
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a więc ghVVVV XYXK 2222 +=+= . 

 

Kąt upadku na Ziemię   to kąt pomiędzy styczną do toru w punkcie A a Ziemią. Wektor prędkości 

wypadkowej jest zawsze styczny do toru a więc kąt  możemy wyliczyć z następującej zależności 
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II sposób wyliczenia prędkości końcowej ładunku (zasada zachowania energii) 

 Prędkość końcową moglibyśmy obliczyć w inny sposób korzystając z zasady zachowania 

energii mechanicznej.  

 Zakładając, że w trakcie ruchu nie dochodzi do rozproszenia energii mechanicznej możemy 

stwierdzić suma energii mechanicznych, początkowej E1 i końcowej E2 są sobie równe. W chwili 

początkowej energia całkowita jest równa sumie energii potencjalnej i kinetycznej a w chwili 

końcowej energii kinetycznej 
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Jak widać uzyskaliśmy więc ten sam wynik. 

 

 

Zad. 3 

Jaką siłą należy działać w kierunku toru na skrzynię o masie m, jeżeli współczynnik tarcia 

kinetycznego wynosi , aby poruszała się ona ruchem jednostajnym prostoliniowym: 

a) po torze poziomym 

b) po równi pochyłej w górę, jeżeli tworzy ona kąt  z poziomem. 

Przyspieszenie ziemskie wynosi g. Wykonaj rysunki zaznacz wektory działających sił. 

---------------------------------------------------------------------------------------- 

Dane: m,   g     Szukane: F 

 

Rozwiązanie 

 

Z zadania wiemy, że ciało ma poruszać się ruchem jednostajnym prostoliniowym. Z I zasady 

dynamiki Newtona wiemy, że taka sytuacja jest możliwa jeżeli siły działające na ciało równoważą 

się (ich suma wektorowa jest równa 0).  

 

 



a) 

  
 

W omawianym zadaniu będą występowały cztery siły: siła grawitacji Fg, siła reakcji podłoża (siła 

sprężystości podłoża) FR, siła tarcia FT oraz siła zewnętrzna podtrzymująca ruch F. Siła tarcia jest 

skierowana przeciwnie do ruchu ciała (stycznie do toru). Dodatkowo na rysunku zaznaczono 

wektor prędkości V, aby wiadomo było w którą stronę porusza się skrzynia. 

Jeżeli mamy do czynienia z ruchem jednostajnym prostoliniowym  

0=+++ TRg FFFF


 . 

Suma wektorów sił grawitacji i reakcji podłoża równa się zero (mają te same wartości i kierunki, 

ale przeciwne zwroty) 0=+ Rg FF


 a więc 

0=+ TFF


. 

Zapisując powyższe równanie skalarnie musimy uwzględnić, że siły F i FT mają przeciwne zwroty, 

co uwzględnimy dopisując znak minus przy FT 

TT FFFF ==− 0 . 

Siła tarcia jest równa iloczynowi współczynnika tarcia kinematycznego i siły nacisku   

NT FF =  

W powyższym przypadku siła nacisku jest równa sile grawitacji (FN = Fg) stąd 

mgFFF NT  ===  

Wartość siły działającej na skrzynię wynosi mgF = . 

 

 

b) 

 



 

Również w powyższym przypadku, aby ciało poruszało się ruchem jednostajnym prostoliniowym 

wypadkowa sił działających na ciało musi się równać 0. 

0=+++ TRg FFFF


 

W celu ułatwienia dalszych rachunków rozłóżmy siłę grawitacji na składowe styczną do toru FS i 

normalną do toru FN. 

Na poniższym rysunku widać, że NSg FFF


+=  a więc 

 

0=++++ TRNS FFFFF


 

 

Siła normalna do toru to siła nacisku równa co do wartości sile reakcji. Siły FN i FR maja przeciwne 

zwroty a więc ich suma jest równa 0   ( 0=+ RN FF


) stąd 

 

0=++ TS FFF


. 

 
Zapisując powyższe równanie skalarnie po uwzględnieniu zwrotów wektorów otrzymamy 

 

NSTSTS FFFFFFFFF +=+==−+− 0  

 

Na podstawie rysunku możemy napisać  

 cos,sin gNgS FFFF ==  

)cos(sincossin  +=+= mgFFF gg  

 

Wartość siły wynosi )cos(sin  +=mgF  

 

zad. 4 

Jaką minimalną prędkość początkową należy nadać ciału o masie m, aby wjechało na szczyt równi 

pochyłej o długości l i kącie nachylenia , jeżeli współczynnik tarcia kinetycznego wynosi . 

Wyznacz pracę wykonaną przez siły tarcia. Przyspieszenie ziemskie wynosi g. 

 

Dane: l,   g      Szukane: V0, WT  

 

 

 



 
 

 W tym przypadku mamy do czynienia z prostoliniowym ruchem jednostajnie opóźnionym. 

Ciało będzie zwalniało pod wpływem siły tarcia i na skutek działania siły grawitacji. Pytanie 

dotyczy początkowej prędkości minimalnej a więc zakładamy, że na szczycie równi ciało na chwilę 

zatrzyma się.  

 Wykonajmy rysunek ciała w pewnej chwili na równi. Jest on analogiczny do rysunku z 

poprzedniego zadania, ale tym razem nie ma siły zewnętrznej ciągnącej (pchającej ciało). 

 

 
 

Wypadkowa siła działająca na ciało będzie sumą wszystkich sił 

 

SNRTgRTwyp FFFFFFFF
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Siła normalna do toru to siła nacisku równa co do wartości sile reakcji, siły FN i FR maja przeciwne 

zwroty a więc ich suma jest równa 0   ( 0=+ RN FF


) stąd 

STwyp FFF
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Przechodząc na zapis skalarny możemy zapisać  

 

STwyp FFF +=   (siły FT i FS mają te same kierunki i zwroty). 

Korzystając z II zasady dynamiki Newtona możemy zapisać, że siła wypadkowa będzie równa 

iloczynowi masy i przyspieszenia Fwyp = ma. W rzeczywistości a będzie opóźnieniem bo zwrot 

wektora a jest przeciwny do wektora prędkości V. Korzystając z zależności trygonometrycznych 

wprowadzonych w poprzednim zadaniu możemy zapisać  

 

)cos(sincossin  +=+=+= mgFFFFma ggTS   



stąd 

)cos(sin  += ga . 

Skorzystajmy z zależności na drogę i prędkość w ruchu jednostajnie opóźnionym 
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z początkowych rozważań wiemy, że prędkość końcowa jest równa zero (VK = 0) a więc czas ruchu 

ciała na równi obliczymy z równania  

a

V
tatV 0

00 =−=  

 

podstawiając czas ruchu ciała na równi do wzoru na drogę otrzymamy 
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Aby obliczyć pracę wykonaną przez siłę tarcia skorzystajmy ze wzoru na pracę. W tym przypadku 

podczas ruchu ciała wzdłuż wektora przemieszczenia działała siła tarcia  cosmgFT = a więc 

możemy zapisać 

 cosmgllFW TT ==   

Odp. 

Minimalna prędkość początkowa wynosiła )cos(sin  += glV 20  a praca wykonana przez siły 

tarcia  cosmglWT = . 

 

II sposób na obliczenie WT (zasada zachowania energii) 

 Do ostatniego wzoru możemy dojść również korzystając z zasady zachowania energii. W 

chwili początkowej (na dole równi pochyłej) ciało posiadało jedynie energię kinetyczną a w chwili 

końcowej energię potencjalną wynikającą z faktu, że ciało wzniosło się na pewną wysokość. W 

bilansie energii musimy uwzględnić również ciepło Q które zostało wydzielone w trakcie ruchu pod 

górę.  
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z zasady zachowania energii E1 = E2 
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Ciepło powstało na skutek tarcia a więc sinmglmVWT −= 2
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Sprawdźmy jeszcze czy wynik uzyskany drugą metodą jest równy wynikowi pierwszemu. 

Podstawmy więc do ostatniego wzoru otrzymany wcześniej wynik na prędkość początkową 

)cos(sin  += glV 20  
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Jak widać drugą metodą otrzymaliśmy identyczną zależność. 

 

Zadania do samodzielnego wyliczenia  

 

S1. Dane są dwa wektory:  

kjibjia

3243 ++−=+= ,  

Oblicz: 

a) długość każdego wektora  

b) różnicę ab


−  

c) iloczyn skalarny ba


  

d) kąt zawarty między wektorami, 

e) iloczyn wektorowy ab


  

 

S2. Granat wyrzucony pod kątem  do poziomu eksplodował w najwyższym punkcie toru po czasie 

t. Wyznacz prędkość granatu w chwili wyrzucenia? Wyznacz drogę poziomą pokonaną przez granat 

do chwili wybuchu. Przyspieszenie ziemskie jest dane – g. Wykonaj rysunek - zaznacz trajektorię 

lotu granatu oraz wektory prędkości. 
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S3. W rzucie poziomym zasięg rzutu jest dwukrotnie większy od wysokości początkowej. Prędkość 

początkowa ciała wynosi V0. Oblicz czas trwania rzutu, prędkość końcową ciała oraz kąt upadku na 

Ziemię. Wykonaj rysunek, zaznacz wektory prędkości i przyspieszenia w chwili początkowej i 

końcowej.  Przyspieszenie ziemskie wynosi g.   

 

Odp. 
g

V
t 0=  ,  02VVK = , 
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S4. Ciało o masie m zsuwa się bez prędkości początkowej po równi pochyłej nachylonej do 

poziomu pod kątem . Po czasie t prędkość ciała wynosi V. Oblicz współczynnik tarcia pomiędzy 

ciałem i równią. Wyznacz ilość ciepła wydzielonego podczas ruchu. Wykonaj rysunek i zaznacz 

poprawnie wektory.  Przyspieszenie ziemskie wynosi g.  
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(proszę pamiętać, że siła tarcia jest skierowana przeciwnie do kierunku ruchu ciała) 

 

 

Zad. 1  

 



Człowiek z kamieniem w dłoni stoi na wózku spoczywającym na torach. W pewnym momencie 

człowiek wyrzuca poziomo kamień wzdłuż kierunku torów nadając mu prędkość V1. Jaką pracę 

wykonał człowiek jeżeli jego masa wraz z wózkiem wynosi M a masa kamienia m? 

------------------------------------------------------------------------------------------------------------------------ 

 

Treść zadania jest krótka a zadanie proste do wyliczenia, ale jednak niejednokrotnie sprawia 

studentom problemy. Pytanie o pracę sugeruje zastosowanie wzoru W = F∙s który w tym przypadku 

nam się nie przyda. Pracę wykonaną przez człowieka możemy natomiast wyznaczyć obliczając 

zmianę energii układu. Różnica energii końcowej i początkowej będzie równa pracy jaką wykonał 

człowiek. Innymi słowy mówiąc, jeżeli w pierwszej sytuacji wózek wraz z człowiekiem i 

kamieniem był w spoczynku a potem poruszał się zarówno wózek z człowiekiem jak i kamień to 

ruch ten wziął się z pracy wykonanej przez człowieka. 

  

 

Dane: M, m,  V1 

Szukane: W 

 

Rozwiązanie 

 

 
Jak widać na powyższym rysunku  wektory prędkości człowieka i kamienia mają przeciwne zwroty, 

natomiast wartość prędkości kamienia jest większa od wartości prędkości człowieka. Skąd takie 

założenie? W układzie siły zewnętrzne równoważą się (siła grawitacji i siła reakcji podłoża) a więc 

całkowity pęd układu jest stały. Mamy więc tu do czynienia z zasadą zachowania pędu. 

Przypomnijmy, że pęd jest wielkością wektorową a więc stałość dotyczy kierunku, zwrotu i 

wartości wektora pędu. 

Pęd początkowy (sytuacja 1) jest równy 0 bo układ nie porusza się, natomiast wektor pędu w 

sytuacji 2 będzie równy sumie wektorów pędu kamienia oraz wózka z człowiekiem 

2121 0 VMVmpp


+== , . 

 Z zasady zachowania pędu wynika, że 21 pp


= a więc 

21210 VMVmVMVm


−=+= . 

Widać więc, że zwroty wektorów prędkości są przeciwne a jeżeli m < M  to V1 > V2. 

Przejdźmy na zapis skalarny (musimy w tej sytuacji uwzględnić kierunki i zwroty wektorów) 

 

2121 0 MVmVpp −== ,    

 

W powyższym wzorze pojawił się znak minus, gdyż wektory prędkości (oraz pędu) będą miały 

przeciwne zwroty. Porównując wartości pędów obliczymy prędkość człowieka wraz z wózkiem po 

wyrzuceniu kamienia 



M

mV
VMVmV 1
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Tak jak napisałem na początku, praca wykonana przez człowieka będzie równa różnicy energii 

końcowej i początkowej. Zapiszmy więc wzory na energię w sytuacjach 1 i 2. Jeżeli założymy, że 

poziom człowieka i kamienia względem powierzchni Ziemi nie ulegają zmianie to w rozważaniach 

możemy pominąć energię potencjalną układu (weźmiemy pod uwagę jedynie energię kinetyczną). 

W chwili początkowej energia całkowita równa się zero bo nic się nie porusza (energia kinetyczna 

jest równa 0). Natomiast w sytuacji 2 porusza się zarówno człowiek z wózkiem jak i kamień a więc 

sumujemy ich energie kinetyczne. Zwróćcie Państwo uwagę, że w tym przypadku sumujemy 

energie bo są to wielkości skalarne i w rozważaniach energetycznych nie ma znaczenia w którą 

stronę poruszają się poszczególne elementy układu. 
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Pracę możemy więc wyliczyć z następującego wzoru 
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Podstawiając za V2 zależność wyznaczoną wcześniej z zasady zachowania pędu ostatecznie 

otrzymamy zależność na pracę wykonaną przez człowieka 
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Zad. 2 

Rozpędzony wagon kolejowy porusza się po torach z prędkością V1. Na wagonie znajduje się 

zamocowane działo, którego lufa jest skierowana pod kątem  przeciwnie do kierunku ruchu (patrz 

rysunek). Po chwili działo wystrzeliło pocisk o masie m nadając mu prędkość względem otoczenia 

V2. Jaka będzie prędkość wagonu wraz z działem po wystrzale? 

---------------------------------------------------------------------------------------------------------- 

 

Również w tym przypadku możemy skorzystać z zasady zachowania pędu jednak sytuacja jest 

nieco bardziej skomplikowana. Zacznijmy od rysunku 

 

 
 



Ponownie dzielimy zadanie na dwa etapy. Jak wspomniałem, możemy wykorzystać zasadę 

zachowania pędu. W tym przypadku jednak siły równoważą się jedynie dla kierunku poziomego (w 

pionie odrzut wagonu nie jest możliwy bo działa siła reakcji podłoża). Będziemy więc rozpatrywać 

wektory pędu (prędkości) jedynie wzdłuż osi x. Jak widać na powyższym rysunku wektor prędkości 

kuli V2 został rozłożony na dwie składowe z których interesuje nas składowa V2x. 

 

Zapiszmy wektorowo pędy w sytuacjach 1 i 2 (dla kierunku osi x). 

xVmVMpVmMp 23211


+=+= ,)( , 

Przejdźmy na zapis skalarny (musimy w tej sytuacji uwzględnić kierunki i zwroty wektorów) 

xmVMVpVmMp 23211 −=+= ,)( . 

W powyższym wzorze na p2 pojawił się znak minus, gdyż wektory prędkości (oraz pędu) będą 

miały przeciwne zwroty. 

Korzystając z zasady zachowania pędu p1 = p2 oraz zależności trygonometrycznej cos = V2x/V2 

możemy zapisać 

cos)( 231 mVMVVmM −=+  
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Zad. 3 

 

Na dwóch niciach o długości l zawieszono w tym samym punkcie dwie małe kulki z plasteliny o 

masach m1 i m2 . Kulkę o masie m1 odchylono o pewien kąt   i puszczono. Ile ciepła wydzieliło się 

podczas zderzenia jeżeli było ono całkowicie niesprężyste. Przyspieszenie ziemskie wynosi g. 

------------------------------------------------------------------------------------------------------------- 

 

Dane: l, m1, m2,  g              Szukane: Q 

 

Przy rozwiązywaniu zadania istotne jest, aby podzielić je na właściwe etapy, wykonać rysunki i 

zapisać wzory. Mamy do czynienia ze zderzeniem całkowicie niesprężystym a więc po zderzeniu 

kulki skleją się a w trakcie zderzenia wydzieli się ciepło, które należy uwzględnić w bilansie 

energetycznym. Rysunek będzie się składał z trzech etapów 

 
Na rysunku przerywaną linią oznaczono poziom dla którego zakładamy, że energia potencjalna jest 

równa 0.  

Zapiszmy energie i wartości pędów  w poszczególnych przypadkach 
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1) W pierwszym etapie kulki nie poruszają się a więc jedyną energią jest energia potencjalna kulki 

o masie m1 wzniesionej na wysokość h. Jeżeli nie ma ruchu to pęd jest równy 0. 

2) W sytuacji tuż przed zderzeniem kulka m1 porusza się z prędkością V1. W związku z tym posiada 

energię kinetyczną E1 i pęd p1. 

3) Trzeci etap to sytuacja tuż po zderzeniu (kulki zderzyły się, ale jeszcze nie wychyliły). Kulki 

wskutek zderzenia całkowicie niesprężystego skleiły się i poruszają się razem z prędkością V2 (stąd 

energia kinetyczna i pęd). W trakcie zderzenia wydzieliło się ciepło Q.  

 

Korzystając z zasady zachowania energii możemy zapisać E1 = E2 = E3. 

Zasada zachowania pędu jest jednak spełniona tylko pomiędzy etapami 2 i 3 tzn. 
321 ppp


= . 

Dlaczego zasada zachowania pędu nie została spełniona pomiędzy etapami 1 i 2? 

Bo podczas opadania na kulkę działała niezrównoważona składowa siły grawitacji Fgs (rys poniżej). 

To ona spowodowała, że kulka zaczęła przyspieszać do prędkości V1. 

 

 

 
Teraz wystarczy skorzystać z rysunków i zapisanych powyżej zależności 

2

221

2

11

2

221

2

1132

21

1
22211132

1

2

11121

2

1

2

1

2

1

2

1

12

122
2

1

1

VmmVmQQVmmVmEE

gl
mm

m
VVmmVmpp

glghVVmghmEE

lh
l

hl

)()(

)cos()(

)cos(

)cos(cos

+−=++==

−
+

=+==

−====

−=
−

=







 

 

Prędkości V1 i V2 zostały już wyliczone i wystarczyłoby podstawić je do poniższego wzoru 
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Zadania do samodzielnego wyliczenia  

 



S4  
Człowiek z kamieniem stoi na wózku poruszającym się z prędkością V1. W pewnym momencie człowiek 

rzucił przeciwnie do kierunku ruchu kamień o masie m nadając mu prędkość poziomą V2 (względem 

otoczenia). Wyznacz masę człowieka wraz z wózkiem jeżeli ich prędkość po wyrzucie wynosi V3. Jaką pracę 

wykonał człowiek przy wyrzucie? Wykonaj rysunek, zaznacz wektory prędkości.  
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S5 

Kulka o masie M została zawieszona na nieważkiej i nierozciągliwej nici o długości l. Nić z kulką odchylono 

od pionu o kąt   i puszczono. W chwili, gdy nić była równoległa do pionu w kulkę trafił lecący poziomo 

pocisk o masie m. Pocisk utkwił w kulce a cały układ (kulka + pocisk) zatrzymał się. Znajdź ilość ciepła 

wydzielonego podczas zderzenia. Wykonaj rysunki i odpowiednio oznacz wektory prędkości.  

 

Odp. )/1)(cos1( mMMglQ +−=   

 

S6 

Plastelinowa kulka o masie m1 została powieszona na cienkiej i nierozciągliwej nici o długości l a 

następnie nić z kulką została odchylona z położenia równowagi o kąt 900. Po uwolnieniu kulki 

zaczęła ona opadać a w najniższym punkcie toru zderzyła się z drugą kulką o masie m2. O jaki kąt 

maksymalny odchyli się nić ze sklejonymi kulkami? Ile ciepła wydzieliło się podczas zderzenia? 

Kulki należy potraktować jako punkty materialne. Przyspieszenie ziemskie wynosi g. Wykonaj 

rysunki, zaznacz wektory prędkości. 
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Ruch po okręgu 

 

Komentarz 

W zadaniach będziemy mieli czynienia z ruchem punktu materialnego po okręgu. Jak już Państwo 

wiecie z przesłanych materiałów możemy w tym przypadku mówić o dwóch siłach związanych z 

tym ruchem. Siłą dośrodkową powodującą zakrzywienie toru ruchu oraz siła odśrodkową (siłą 

bezwładności) odczuwalną z punktu widzenia obserwatora znajdującego się w ruchu po okręgu. 

Możemy rozwiązywać zadania z punktu widzenia obserwatora z zewnątrz (widzącego efekt 

działania siły dośrodkowej) lub obserwatora poruszającego się po okręgu. Ja preferuję pierwszy 

punkt widzenia. 

 

 

Zad. 1 

Na lince o długości l zawieszono kulkę a następnie wprawiono ją w ruch tak, że zaczęła 

wykonywać pionową pętlę. Z jaką maksymalną prędkością kątową może obracać się kulka, jeżeli 

linka może wytrzymać siłę 4-krotnie większą od ciężaru kulki? Przyspieszenie ziemskie wynosi g. 

Wykonaj rysunek (zaznacz poprawnie wektory prędkości i sił). 

 

Dane: l,  g 

Szukane:  
------------------------------------------------------------------------------------------------------------------------ 

Rozwiązanie 

 

Zakładamy, że kulka porusza się po okręgu ze stałą co do wartości prędkością liniową V, styczną do 

okręgu. Dzieje się tak, gdyż występuje siła naciągu linki N, która wraz z siłą grawitacji Fg będą 



stanowiły siłę dośrodkową Fd. Jak widać na poniższym rysunku pomimo, że wartość prędkości 

będzie cały czas taka sama (długość wektora czerwonego nie zmienia się) siła naciągu linki (wektor 

zielony) jest różna w zależności od punktu na okręgu. Dzieje się tak ponieważ wektor siły 

grawitacji jest różnie skierowany w stosunku do promienia okręgu. Jak widać w dolnym punkcie 

siła naciągu będzie największa bo linka musi "poradzić sobie" z siłą grawitacji oraz zakrzywić tor 

ruchu kulki (spełnić rolę siły dośrodkowej). Wartość siły dośrodkowej będzie z tego punktu 

widzenia równa sile naciągu minus siła grawitacji a więc  możemy zapisać 

 

gd FNF −= 1  

Linka może wytrzymać siłę 4-krotnie większą od ciężaru kulki a więc  

gFN 41 = . 

Z powyższych równań wynika, że 

gggd FFFF 34 =−=  . 

Skorzystajmy ze wzoru na siłę dośrodkową (m - masa kulki, r - promień okręgu, V - prędkość 

liniowa,  - prędkość kątowa) 
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Porównując otrzymane wzory na siłę dośrodkową uzyskamy 
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g
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Maksymalna prędkość kątowa kulki to 
l

g3
=  

Uwaga do rysunku 

Patrząc na powyższy rysunek i obliczenia moglibyśmy powiedzieć, że 

ggg FNFNNFN 234 3421 ==== ,, . 

 

 

Inny punkt widzenia 

 

Zadanie można by obliczyć rozważając siłę bezwładności (siłę odśrodkową). Na poniższym 

rysunku widać, że linka musi "poradzić sobie" z siłą bezwładności (siłą odśrodkową) oraz siłą 

ciężkości a więc 

 

god FFN +=1  



 

 
 

wiemy już, że linka może wytrzymać siłę 4-krotnie większą od ciężaru kulki czyli 

 

gFN 41 =  

a więc 

godg FFF +=4 .  

Wiemy, że wartości siły dośrodkowej i odśrodkowej są takie same a więc korzystając z powyższego 

wzoru oraz wcześniej wyliczonej siły dośrodkowej możemy zapisać 
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 Uzyskaliśmy więc ten sam wynik patrząc nieco inaczej na tę samą sytuację. 

 

 

zad. 2 

Mała kulka stacza się po rynnie zakończonej pionową pętlą o promieniu r 

a) z jakiej minimalnej wysokości kulka powinna się stoczyć, aby nie odpaść od pętli (wykonać 

pełen obrót)? 

b) z jakiej wysokości kulka ta powinna się stoczyć, aby odpaść od pętli na wysokości rh
2

3
= ? 

Kulkę traktujemy jako punk materialny, opory są pomijalnie małe. 

---------------------------------------------------------------------------------------------------------------- 

Przydatne linki 

https://www.youtube.com/watch?v=bCs8h8Yr4R0 

https://www.youtube.com/watch?v=HV_WuRzcwuo 

Rozwiązanie 

a) 

Zastanówmy się jakie siły będą pełniły rolę siły dośrodkowej w trzech różnych punktach toru dla 

kulki która stoczyła się z dużej wysokości. Jak widać na poniższym rysunku wartość prędkość 

liniowej kulki V będzie malała wraz z jej wznoszeniem się na pętli (wzrost energii potencjalnej 

kosztem energii kinetycznej). Siła dośrodkowa która powoduje ruch po okręgu jest wypadkową sił 

reakcji podłoża i siły grawitacji. W najniższym punkcie (1) siła reakcji musi zakrzywić tor ruchu i 

zrównoważyć siłę grawitacji. W połowie wysokości siła grawitacji nie ma wpływu na ruch po 

okręgu bo jest prostopadła do promienia (nie ma składowej równoległej do promienia okręgu). W 

najwyższym punkcie toru rolę siły dośrodkowej pełni zarówno siła reakcji podłoża jak i siła 

grawitacji (maja ten sam kierunek i zwrot  tzn. do środka okręgu). 

https://www.youtube.com/watch?v=bCs8h8Yr4R0
https://www.youtube.com/watch?v=HV_WuRzcwuo


 
 

Nietrudno się domyśleć, że aby kulka wykonała pełną pętlę musi pokonać najwyższy punkt 

kolistego toru a więc interesuje nas trzeci przypadek gd FRF += 33 . W zadaniu jednak jest 

pytanie... z jakiej minimalnej wysokości powinna stoczyć się kulka, aby pokonać pętlę? Oznacza to, 

że kulka "ledwie ledwie" pokona pętlę a więc w najwyższym punkcie nie będzie już naciskała na 

podłoże czyli siła reakcji będzie równa 0. Z tego płynie wniosek, że w najwyższym punkcie pętli 

siła dośrodkowa będzie równa sile grawitacji. 

 

 
 

Z powyższego warunku możemy wyliczyć jaką minimalną prędkość powinna mieć kulka w 

najwyższym punkcie toru, aby pokonała pętlę. 
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Aby wyznaczyć wysokość minimalną skorzystamy z zasady zachowania energii mechanicznej 

(wiemy, że opory są pomijalnie małe). W sytuacji 1) kulka nie porusza się ma więc energię 

potencjalną względem najniższego punktu pętli 

 

minmgHE =1  

 

W położeniu 2) kulka posiada energie potencjalną i kinetyczną 
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Z zasady zachowania energii możemy zapisać 
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Podstawiając do powyższego równania wzór na prędkość grV = uzyskamy 

mgrrmgmgH
2

1
2 +=min

. 

Po elementarnych przekształceniach możemy zapisać wzór na wysokość minimalną  

 

grH
2

5
=min

 

 

b) Na początek wykonajmy rysunek. Na poniższym rysunku uchwycono chwilę w której kulka 

znajduje się przy torze, ale już na niego nie naciska a ułamek sekundy później oderwie się od niego 

i będzie poruszała się po paraboli (kontynuuje ruch jak w rzucie ukośnym).  

 

 
Zadanie możemy obliczyć podobnie jak poprzedni podpunkt, jednak tym razem będzie nieco 

trudniej. Skoro w punkcie 2) kulka już nie naciska na podłoże (pętlę) tzn. siła reakcji jest równa 0. 

Jedyną siłą jaka może pełnić rolę siły dośrodkowej w tym punkcie jest siła grawitacji. Jednak jest 

ona skierowana pionowo w dół dlatego rozłożymy ją na składowe styczną i normalną do toru. Dla 

przejrzystości rysunku powiększę wektor siły grawitacji w porównaniu z poprzednimi rysunkami. 

 

 
 



Na powyższym rysunku liniami przerywanymi z zaznaczono składowe siły grawitacji czyli 

gSgNg FFF
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+= . 

Nas będzie interesowała jedynie składowa normalna do toru bo to ona w tym przypadku będzie 

pełniła rolę siły dośrodkowej 
gNd FF
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Z rysunku widać, że singgN FF =  oraz 
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Obliczmy jak w podpunkcie a) wartość prędkości jaką będzie miała kulka na wysokości h 
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Dalej postępujemy jak w podpunkcie a). 

Skorzystamy z zasady zachowania energii mechanicznej. W sytuacji 1) kulka nie porusza się ma 

więc energię potencjalną względem najniższego punktu pętli 

mgHE =1  

W położeniu 2) kulka posiada energie potencjalną i kinetyczną 
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mVrmgmVmghE +=+= . 

Z zasady zachowania energii możemy zapisać 
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Podstawiając do powyższego równania wzór na prędkość grV
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= uzyskamy 
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Po elementarnych przekształceniach możemy zapisać wzór na poszukiwaną wysokość  
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Zad. 3 

Na nici o długości l zawieszono niewielki ciężarek o masie M. Z ciężarkiem tym zderzył się 

całkowicie niesprężyście lecący poziomo pocisk o masie m. Ciężarek wraz z wbitym pociskiem 

zatoczył okrąg w płaszczyźnie pionowej. Oblicz siłę naciągu nici w najwyższym punkcie tego toru 

jeżeli prędkość początkowa pocisku wynosiła V1. Przyspieszenie ziemskie wynosi g. 

 

Dane: M, m, V1, g 

Szukane: N 

 

Rozwiązanie 

 

Na początek wykonajmy rysunek dzieląc zadanie na trzy etapy 



 
 

Pod każdym etapem zapisano energię i pęd. 

1) W pierwszym etapie (tu przed zderzeniem) pocisk porusza się a więc posiada energię kinetyczną 

i pęd.  

2) W sytuacji tuż po zderzeniu pocisk wbija się w ciężarek (zderzenie całkowicie niesprężyste) i 

zaczynają poruszać się razem. W związku z tym układ (ciężarek + pocisk) posiada energię 

kinetyczną E2 i pęd p2 a dodatkowo wydzieliło się ciepło Q (zderzenie całkowicie niesprężyste). 

3) Trzeci etap, układ w najwyższym punkcie kołowego toru. Układ ma prędkość w związku z tym 

posiada energię kinetyczną i pęd. Układ wzniósł się na wysokość 2l a tym samym posiada energię 

potencjalną. Cały czas mamy w układzie ciepło Q. 

 

Korzystając z zasady zachowania energii możemy zapisać E1 = E2 = E3. 

Zasada zachowania pędu jest jednak spełniona tylko pomiędzy etapami 1 i 2 tzn. 
321 ppp
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= . 

Dlaczego zasada zachowania pędu nie została spełniona pomiędzy etapami 2 i 3? 

Bo podczas wznoszenia na kulkę działała niezrównoważona składowa siły grawitacji Fgs styczna do 

toru. To ona spowodowała, że układ zwolnił do prędkości V3. 

Jak widać na rysunku w najwyższym punkcie toru siła grawitacji + siła naciągu będą pełniły rolę 

siły dośrodkowej 
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zapis skalarny jest analogiczny (kierunki i zwroty sił są takie same)  NFF gd +=  stąd 
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Żeby wyliczyć wartość siły naciągu w najwyższym punkcie toru musimy więc wyliczyć prędkość 

V3. 

 

Porównajmy energie E2 i E3 
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po elementarnych przekształceniach uzyskamy 
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Nie znamy prędkości V2, ale możemy ją wyliczyć korzystając z zasady zachowania pędu 21 pp =  
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Uzyskaliśmy w powyższy sposób wartość siły naciągu nici w najwyższym punkcie toru. 

 

 

Zadania do samodzielnego wyliczenia  

 

S1 

Ciężarówka o masie m jedzie po moście ze stałą prędkością V. Z jaką siłą naciska ciężarówka na 

most przejeżdżając przez jego środek, jeżeli: 

a) most jest poziomy  

b) most jest wypukły o promieniu krzywizny R 

c) most jest wklęsły o promieniu krzywizny R 

Wykonaj rysunek, zaznacz wektory sił i prędkości. Przyspieszenie ziemskie wynosi g.  

 

Odp. a) mgFN = , b) 
R
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S2 

 Na nici o długości l zawieszono ciężarek o masie M. Z ciężarkiem tym zderza się całkowicie 

niesprężyście lecący poziomo pocisk o masie m. Oblicz minimalną prędkość jaką musiał posiadać 

pocisk jeżeli ciężarek wraz z wbitym pociskiem zatoczył okrąg w płaszczyźnie pionowej? 

Przyspieszenie ziemskie jest dane – g. Wykonaj rysunki, zaznacz wektory prędkości w 

poszczególnych etapach ruchu.  
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Podpowiedź  

Powyższe zadanie to kompilacja zadań 2a) oraz 3. 

 

 

 

 

 

 



Zasada zachowania energii i zasada zachowania momentu pędu 

 

zad. 1 

Pionowy słup o wysokości h po podpiłowaniu przy podstawie przewraca się. Znajdź prędkość 

liniową jego górnego końca w chwili uderzenia o Ziemię. Dane jest przyspieszenie ziemskie - g. 

 

Wprowadzenie 

Prędkość liniowa a prędkość kątowa  

 

 
 

Rozwiązanie 

 

Dane: h, g 

Szukane:  

 

Zadanie podzielimy na dwa etapy 1) tuż po podcięciu słupa i 2) tuż przed upadkiem słupa na 

Ziemię. 

 

       1)                                                                                2)   

 

                 



Zakładając, że w trakcie ruchu nie występują opory powietrza zadanie najprościej można obliczyć 

stosując zasadę zachowania energii mechanicznej. Jako punkt odniesienia dla zerowej energii 

potencjalnej przyjmiemy powierzchnię Ziemi. 

 

1) W pierwszej sytuacji nie ma ruchu a więc słup posiada tylko energię potencjalną. Nie możemy 

jednak zastosować klasycznego zapisu na energie potencjalną E ≠ mgh gdyż cała masa słupa nie 

znajduje się na wysokości h. Słup to bryła sztywna a więc skupimy się na jego środku masy. 

Znajduje się on na wysokości h/2 a więc 

hmgE
2

1
1 =  

2) W drugiej sytuacji środek masy słupa znajduje się na powierzchni Ziemi a więc jego energia 

potencjalna jest równa zero. Nie można zapisać, że energia kinetyczna jest równa E = mV2/2 bo 

słup nie porusza się z prędkością V a jedynie jego koniec. Możemy jednak zauważyć, że cały słup 

wykonuje ruch obrotowy względem osi obrotu na początku słupa stąd zastosujemy wzór na energię 

kinetyczną w ruchu obrotowym bryły sztywnej 

2

2
2

1
IE =  gdzie I to moment bezwładności pręta. 

Z zasady zachowania energii możemy zapisać 
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Moment bezwładności pręta względem osi obrotu przechodzącej przez jego koniec wynosi 

2

3

1
mlI =  gdzie m - masa pręta, l - długość pręta. 

Długość słupa wynosi h a więc jego moment bezwładności względem osi obrotu wynosi  
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Prędkość górnego końca słupa w chwili uderzenia o Ziemię wynosi ghV 3= . 

 

 

 

 

zad. 2 

Listwa drewniana o długości l i masie M może obracać się dookoła osi prostopadłej do niej, 

przechodzącej przez jej środek. W odległości l/8 od końca listwy trafia pocisk o masie m lecący z 

prędkością V w kierunku prostopadłym do listwy i osi obrotu. Znajdź prędkość kątową, z jaką 

listwa zacznie się obracać, gdy utkwi w niej pocisk. Oblicz ilość ciepła wydzielonego podczas 

zderzenia.   

 

Dane: l, M, m, V 

Szukane: ω, Q 

 

Zadanie podzielimy na dwa etapy 1) tuż przed uderzeniem pocisku i 2) po uderzeniu pocisku 

(wbiciu się w listwę). Zróbmy rysunki (rzut z góry) 

 



 
 

Zakładając, że w trakcie ruchu nie występują opory powietrza i opory na osi, zadanie najprościej 

można obliczyć stosując zasadę zachowania energii oraz zasadę zachowania momentu pędu (jest to 

ruch obrotowy bryły sztywnej). Ze względu na to, że listwa jest ułożona poziomo i pocisk porusza 

się poziomo nie będzie zmian energii potencjalnej a więc możemy ją pominąć w rozważaniach.  

Zapiszmy energię i moment pędu w pierwszej i drugiej sytuacji. 
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gdzie IU - moment bezwładności układu (listwa  + pocisk), Q - ciepło 

 

1) W pierwszej sytuacji porusza się jedynie pocisk a więc mamy jedynie jego energię kinetyczną. 

Trudniejsza sprawa jest z momentem pędu. Łatwo byłoby wyznaczyć pęd, który jest równy 

,mVp =  ale w zadaniu będziemy mieli do czynienia z ruchem obrotowym układu a więc musimy 

posłużyć się wielkością związaną z ruchem obrotowym. Tu pojawia się pytanie... jak pocisk nie 

poruszający się ruchem obrotowym może mieć moment pędu? Pocisk lecąc swobodnie nie ma 

oczywiście momentu pędu tylko pęd, ale trafiając na listwę będzie go posiadał. Spróbujmy 

wyliczyć jego wartość. Wektor momentu pędu możemy zapisać dwojako 

 

prL


=   oraz 

IL =  gdzie r


jest wektorem ramienia. 

 

W pierwszej kolejności spróbujmy dojść do wzoru na L1 korzystając z pierwszej zależności. Mamy 

tutaj iloczyn wektorowy wektora ramienia i wektora pędu (patrz iloczyn wektorowy). Wartość 

momentu pędu możemy zapisać posługując się wiadomościami o iloczynie wektorowym. 

sinprL =   gdzie kąt  jest kątem pomiędzy wektorami ramienia i pędu (patrz poniższy 

rysunek.  

W tym przypadku  = 900 a wartość (długość) wektora ramienia jest równa 3l/8 tym samym 

wartość wektora momentu będzie równa  

lmVrpL
8

3
1 ==    



 
 

Do tego samego wniosku powinniśmy dojść z drugiego wzoru 

IL = . 

Wielkość I to moment bezwładności pocisku względem osi obrotu. Zakładając, że rozmiary pocisku 

są niewielkie i możemy go potraktować jako punkt materialny z definicji momentu bezwładności 

dla punktu materialnego możemy zapisać 2mrI =  natomiast 
r

V
= . Podstawiając nasze wielkości 

do wzoru na wartość momentu bezwładności 
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32

1 ====   otrzymaliśmy ponownie ten sam wzór na L1. 

 

Dociekliwi mogliby się zapytać... dlaczego we wzorze na E1 użyłem wzoru dla ruchu postępowego 

a nie obrotowego? Odpowiedź brzmi... bo tak było szybciej i łatwiej. Postaram się jednak 

udowodnić niedowiarkom, że możemy również w przypadku energii rozpatrywać ten ruch jako 

hipotetyczny ruch obrotowy wokół osi umieszczonej w środku listwy. Dla ruchu obrotowego 

energię kinetyczną zapiszemy w postaci 2

1
2

1
IE = . Jak wcześniej zapisałem wartość momentu 

bezwładności pocisku względem osi obrotu oddalonej o r wynosi 2mrI = , natomiast wartość 

prędkości kątowej 
r

V
=  stąd 
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2) Sytuacja druga jest znacznie prostsza. W wyniku zderzenia pocisku z listwą cały układ zaczyna 

obracać się. E2 jest równa sumie energii kinetycznej ruchu obrotowego układu (listwa + pocisk) 

oraz ciepłu wydzielonemu podczas zderzenia. Moment pędu L2 to moment pędu układu. 

 

Na pocisk i listwę nie działają niezrównoważone momenty sił zewnętrznych a więc możemy 

skorzystać z zasady zachowania momentu pędu 21 LL


= (patrz wykłady). Zwroty i kierunki obu 

wektorów są takie same a więc 21 LL =  co daje 
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Moment bezwładności układu IU jest równy sumie momentów bezwładności listwy IL oraz pocisku 

IP. Moment bezładności listwy względem osi przechodzącej przez jej środek jest równy 
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Znając wartość prędkości kątowej układu po zderzeniu  bez problemu możemy wyznaczyć ciepło 

wydzielone podczas zderzenia korzystając z zasady zachowania energii 
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zad. 3 

Listwa drewniana o długości l i masie M może obracać się dookoła osi prostopadłej do niej, 

przechodzącej przez jej koniec. W listwę trafia pocisk o masie m lecący z prędkością V1 w kierunku 

prostopadłym do listwy i osi obrotu. Znajdź prędkość kątową z jaką listwa zacznie się obracać, 

jeżeli pocisk zrobił otwór w listwie w odległości l/4 od jej swobodnego końca a następnie 

kontynuował lot w pierwotnym kierunku z prędkością V2. Wyznacz ciepło wydzielone podczas 

zderzenia. Ubytek masy listwy należy zaniedbać.  

 

Dane: l, M, m, V1, V2 

Szukane: ω, Q 

  

Zadanie jest podobne do zadania nr 2. Podzielimy je na dwa etapy 1) tuż przed uderzeniem pocisku 

i 2)  po przebiciu  listwy pociskiem. Zróbmy rysunki (rzut z góry) 

 
 

Na rysunku celowo zmieniłem zwrot wektora prędkości liniowej (w stosunku do rysunku w zadaniu 

2), aby było widać, że zwrot wektora prędkości kątowej również się zmieni. 

Zakładając, że w trakcie ruchu nie występują opory powietrza i opory na osi, zadanie najprościej 

można obliczyć stosując zasadę zachowania energii oraz zasadę zachowania momentu pędu (jest to 

ruch obrotowy bryły sztywnej). Ze względu na to, że listwa jest ułożona poziomo i pocisk porusza 

się poziomo nie będzie zmian energii potencjalnej a więc możemy ją pominąć w rozważaniach.  

Zapiszmy energię i moment pędu w pierwszej i drugiej sytuacji. 
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gdzie  - 2

3

1
MlIL = - moment bezwładności listwy względem osi przechodzącej przez koniec listwy.  

 

1) W pierwszej sytuacji porusza się jedynie pocisk a więc mamy jedynie jego energię kinetyczną. 

Moment pędu pocisku względem osi obrotu wyznaczymy analogicznie do zadania 2. Moment pędu 



to ramię razy pęd. Wartość (długość) ramienia wynosi 3l/4 natomiast wartość pędu równa się mV1 

stąd powyższy zapis. 

2) W sytuacji drugiej pocisk przebił listwę i porusza się nadal ze zmniejszoną prędkością V2 

natomiast listwa zaczęła obracać się z prędkością . Energia druga będzie więc równa sumie 

energii kinetycznych listwy, pocisku oraz ciepłu wydzielonemu w trakcie przebijania listwy. 

Całkowity moment pędu w sytuacji drugiej będzie równy sumie momentu pędu listwy oraz 

momentowi pędu pocisku względem osi obrotu. 
 

Na pocisk i listwę nie działają niezrównoważone momenty sił zewnętrznych a więc możemy 

skorzystać z zasady zachowania momentu pędu 21 LL


=  Zwroty i kierunki obu wektorów są takie 

same a więc 21 LL =  co daje 
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Znając wartość prędkości kątowej listwy po zderzeniu  bez problemu możemy wyznaczyć ciepło 

wydzielone podczas zderzenia korzystając z zasady zachowania energii 
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Zadania do samodzielnego wyliczenia 

S1. Dziecko o masie m stoi na zewnątrz kołowej karuzeli o momencie bezwładności I i promieniu R 

obracającej się z prędkością kątową 1. Dziecko wchodzi na brzeg karuzeli. 

a) Z jaką prędkością kątową będzie obracała się karuzela z dzieckiem? 

b) O ile zmieni się energia kinetyczna układu, gdy dziecko przejdzie od brzegu do środka karuzeli? 

Dziecko należy potraktować jako punkt materialny.  

Odp. 
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S2. Na końcach poziomo wirującego pręta o masie M, przez środek którego przechodzi oś 

prostopadła do powierzchni Ziemi, siedzą dwie małpki (każda o masie m). Pręt ma długość l i 

wiruje z prędkością kątową 1. Jaka będzie prędkość kątowa układu po przejściu małpek do środka 

pręta. Małpki potraktuj jako punkty materialne. Wykonaj rysunek.  
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zad. 1 

Pręt o długości l i masie m1, mogący obracać się wokół osi przechodzącej przez jego koniec został 

wychylony o 900 ze swojego najniższego położenia a następnie puszczony. W najniższym 

położeniu pręt zderzył się całkowicie niesprężyście z niewielką kulką o masie m2 znajdującą się w 

odległości l od punktu zawieszenia pręta. Oblicz prędkość kątową układu (pręt + kulka) tuż po 

zderzeniu oraz ilość ciepła wydzielonego podczas zderzenia? Dane jest przyspieszenie ziemskie - g. 

 

Rozwiązanie 

 

Dane: l, m1, m2, g 

Szukane:  Q 

 



Zadanie podzielimy na trzy etapy 1) pręt wychylony o 900 z położenia równowagi 2) pręt tuż przed 

zderzeniem z kulką, 3) pręt tuż po zderzeniu z kulką (układ pręt + kulka) 

 

 

 

Podobnie jak w poprzednich zadaniach skorzystamy z zasady zachowania energii oraz zasady 

zachowania momentu pędu (pręt jest bryłą sztywną obracającą się wokół osi przechodzącej przez 

jego koniec). 
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1) W pierwszej sytuacji nie ma ruchu a więc słup posiada tylko energię potencjalną (kulka nie 

porusza się i nie ma energii potencjalnej). Środek masy pręta znajduje się na wysokości l od linii 

odniesienia a więc posiada energię potencjalną równą 

glmE 11 = , 

brak ruchu obrotowego znaczy, że L1 = 0. 

 

2) W drugiej sytuacji środek masy pręta znajduje się na wysokości l/2 od linii odniesienia a pręt 

wykonuje ruch obrotowy względem osi obrotu z prędkością kątową 1 a więc posiada energię 

potencjalną i energię kinetyczną ruchu obrotowego (kulka nie porusza się i nie ma energii 

potencjalnej). Pręt posiada również moment pędu  
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Ip - moment bezwładności pręta    
 

3) W trzeciej sytuacji pręt zderzył się całkowicie niesprężyście z kulką a więc utworzyły wspólny 

układ. Tuż po zderzeniu układ jeszcze się nie wychylił a więc nie zmieniła się jego energia 

potencjalna natomiast po połączeniu z kulką prędkość kątowa pręta zmalała i wydzieliło się ciepło 

(wynik zderzenia). Układ uzyskał prędkość kątową 2 a tym samym moment pędu L3.  
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Ik - moment bezwładności kulki względem osi obrotu oddalonej o l od kulki   



 

Możemy zapisać E1 = E2 = E3 oraz L1 ≠ L2 = L3 

Dlaczego nie ma znaku równości pomiędzy momentami pędu L1 i L2? Dlatego, że pomiędzy 

sytuacją 1) oraz 2) na pręt działał zewnętrzny moment siły związany z siłą grawitacji. Popatrzmy na 

poniższy rysunek. 

 
Zarówno w sytuacji gdy pręt opada jak i gdy pręt wisi w najniższym położeniu występuje siła 

grawitacji. Możemy wyznaczyć również wektor ramienia, który łączy oś obrotu ze środkiem masy 

pręta. Jednak przy maksymalnym wychyleniu pręta jak i w trakcie jego opadania kąt zawarty 

pomiędzy wektorami ramienia i siły grawitacji jest niezerowy a więc występuje niezerowy 

zewnętrzny moment siły. Gdy pręt wisi w najniższym położeniu (sytuacje 2 i 3) wyżej wspomniany 

kąt jest równy 0 a więc zewnętrzny moment siły jest równy 0. Zasada zachowania pędu pomiędzy 

sytuacjami 2 i 3 jest więc spełniona. 
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Chcąc obliczyć ciepło porównamy energie E1 i E3 
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Zad. 2 

Na koło o masie m, momencie bezwładności I i promieniu r nawinięto cienką nić, którą następnie 

umocowano do końca równi pochyłej o kącie nachylenia . Gdy koło położono na równi i 

puszczono, zaczęło się swobodnie staczać odwijając nić. Oblicz przyspieszenie liniowe koła oraz 

siłę naciągu nici. Przyspieszenie ziemskie wynosi g. 

 

Dane: m, I, r,  g 

Szukane: a, N 

 

Ruch obrotowy na równi komplikuje zadanie w stosunku do sytuacji gdy ciało zsuwa się po równi. 

Zacznijmy od rysunku 

 



 

 

 

 

Fg - siła grawitacji 
SNg FFF


+=  

FN - siła nacisku (składowa normalna siły grawitacji) 

FS  - siła "zsuwająca" (składowa styczna siły grawitacji) 

N - siła naciągu nici 

FR - siła reakcji (sprężystości) podłoża 

 

Siła wypadkowa FW działająca na koło jest równa sumie wszystkich sił działających na nie 

NFFF gRwyp


++=  

Korzystając z równań 
SNg FFF


+=  oraz 0=+ RN FF


 

NFF Swyp


+=  

Przechodząc na zapis skalarny musimy uwzględnić kierunki i zwroty wektorów. Kierunki 

wektorów Fs i N są takie same natomiast zwroty są przeciwne a więc uwzględnimy to dopisując 

znak 'minus' przed wartością wektora siły naciągu  

 

NFF Swyp −= . 

Korzystając z II zasady dynamiki Newtona można zapisać 

 

NFma S −=     gdzie a jest przyspieszeniem liniowym koła 

Korzystając z zależności trygonometrycznej możemy zapisać  sinsin mgFF gS == co daje 

Nmgma −= sin .      (x) 

Obliczmy teraz siłę naciągu nici N. Zakładamy, że gdyby nie nić to koło poruszałoby się z 

poślizgiem, ale nić sprawia, że koło musi się staczać (nie uwzględniamy tarcia). Żeby koło obracało 

się musi działać na nie niezrównoważony moment siły. Jak go wyznaczyć? Przyjrzyjmy się 

poniższemu rysunkowi 

 

 

 



 
Na rysunku zaznaczono wektory ramienia r, siły naciągu N oraz momentu siły M (wektor ten 

pokrywa się z osią obrotu i jest skierowany przed kartkę). 
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 Korzystając z II zasady dynamiki dla ruchu obrotowego możemy napisać 

 

IM =  gdzie  jest przyspieszeniem kątowym koła. 

 

Porównując obie zależności na M otrzymamy  

r

I
NIrN


 == . 

 

Korzystając z relacji pomiędzy przyspieszeniem liniowym i przyspieszeniem kątowym ra =  

możemy zapisać  

2r

Ia
N =          (xx) 

Podstawmy otrzymany wynik do równania uzyskanego wcześniej (x) 

2r

Ia
mgNmgma −=−=  sinsin  

Po przekształceniach otrzymamy ostatecznie wyrażenie na przyspieszenie liniowe  
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Siłę naciągu nici uzyskamy poprzez podstawienie uzyskanego wzoru na a do równania (xx) 
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Zad. 3 

Korzystając z rozwiązania zadania 2 wyznacz przyspieszenie:  

a) walca staczającego się na równi pochyłej (moment bezwładności walca 2

2

1
mrIw = ) 

b) cienkościennej obręczy (moment bezwładności obręczy 2mrIo = ) 

 

Rozwiązanie 
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b)   
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Rozwiązanie jest trywialne jeżeli wcześniej wyznaczyliśmy a, ale celowo dodałem to proste 

zadanie. Chciałem uzmysłowić Państwu, że w zależności od przestrzennego rozkładu masy 

(momentu bezwładności ciała) bryły będą staczały się z równi z różnym przyspieszeniem. 

 

Zadania do samodzielnego rozwiązania 

 

zad. S_1 

W swobodny koniec zawieszonego u sufitu jednorodnego pręta o masie M  i długości l uderza 

idealnie niesprężyście kulka o masie m lecąca prostopadle do pręta. Z jaką prędkością poruszała się 

kulka jeżeli po zderzeniu pręt (z wbitą kulką) wychylił się o 900. Jaka ilość ciepła wydzieliła się w 

trakcie zderzenia? Kulkę należy potraktować jako punkt materialny. Wykonaj stosowny rysunek. 

Przyspieszenie ziemskie wynosi g.  

Odp. 
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zad. S_2 

Walec o promieniu r stacza się po równi pochyłej o kącie nachylenia α wzdłuż drogi s. Oblicz 

prędkość kątową walca na dole równi oraz przyspieszenie liniowe walca. Dane jest przyspieszenie 

ziemskie g. Moment bezwładności walca wynosi 2

2

1
mrIw = . 

Odp.  
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4 sings
V =       singa
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2
=  

 

Podpowiedź  

Najłatwiej wyliczyć zadanie korzystając z zasady zachowania energii.  

 

zad. 1 

Koło o momencie bezwładności I i promieniu r obraca się wokół swojej osi symetrii. Jaką siłą 

należy przycisnąć klocek hamulcowy do obwodu koła, aby zatrzymać je po upływie czasu t jeżeli 

energia kinetyczna koła w chwili początkowej wynosi Ek? Wyznacz ciepło wydzielone podczas 



tego ruchu oraz drogę kątową jaką pokonało koło do chwili zatrzymania. Współczynnik tarcia 

kinetycznego między kołem i klockiem wynosi μ. 

 

Dane: I, r, t, Ek, μ 

Szukane: FN, Q, α 

 

Na początek wykonajmy stosowny rysunek 

 
 

 

 

Na rysunku koło obraca się zgodnie z ruchem wskazówek zegara a do jego obwodu dociśnięto 

klocek siłą o wartości FN. Zważywszy na to, że współczynnik tarcia kinetycznego wynosi μ a 

wartość siły nacisku FN, pojawi się siła tarcia o wartości FT skierowana stycznie do obwodu koła 

 

NT FF = .            (1) 

 

Punkt przyłożenia siły tarcia znajduje się w odległości r od osi obrotu a więc pojawi się moment 

siły wyhamowującej ruch obrotowy koła równy  

 

TFrM


= .            (2) 

 

 

 
 

Przechodząc na zapis skalarny możemy zapisać, że wartość momentu siły działającego na koło 

będzie równy 

 

T

o

TTT rFrFFrrFM === 90sin),(sin


       (3) 

 

Niezrównoważony moment siły będzie powodował, że koło będzie poruszało się ruchem 

obrotowym jednostajnie opóźnionym. 

NF


 - poszukiwana siła nacisku klocka na koło 

TF


 - siła tarcia 

r


 - wektor ramienia (co do wartości równy promieniowi 

koła) 




 - wektor prędkości kątowej. Obrót koła jest zgodny z 

ruchem wskazówek zegara a więc wektor prędkości 

kątowej ma kierunek pokrywający się z osią obrotu a 

zwrot skierowany za kartkę (oznaczenie - kółko z 

krzyżykiem) 

 

 

Kierunek wektora momentu siły M


jest taki sam jak kierunek 

wektora prędkości kątowej 


 (oba wektory pokrywają się z osią 

obrotu) natomiast zwrot wektora momentu siły jest przeciwny 

do zwrotu wektora prędkości kątowej (jest skierowany przed 

kartkę - oznaczenie - kółko z kropką)). Mamy więc do czynienia 

z ruchem obrotowym jednostajnie opóźnionym. 



Moment siły możemy zapisać również innym wzorem korzystając z drugiej zasady dynamiki dla 

ruchu obrotowego 

 

IM =  gdzie ε oznacza opóźnienie kątowe koła.      (4) 

 

Porównując równania (3) i (4) uzyskamy 

 

r

I
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
= .            (5) 

Jeżeli skorzystamy z równań (1) i (5) otrzymamy wzór na siłę nacisku w postaci  

 

r

I
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= .            (6) 

Nie znamy jednak opóźnienia ε dlatego postarajmy się je obliczyć. W ruchu obrotowym 

jednostajnie opóźnionym możemy zapisać następującą zależność na prędkość kątową po czasie t 

 

t −= 0    gdzie ω0 oznacza początkową prędkość kątową.      (7) 

Z treści zadania wiemy, że koło zatrzymuje się po czasie t a więc ω = 0, czyli w naszym przypadku 

równanie (7) przybiera następująca postać   

 

t
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 =−=           (8) 

Podstawiając uzyskany wynik do równania (6) otrzymamy 

rt

I
FN



0= .            (9) 

Pozostaje więc wyliczyć początkową prędkość kątową koła. Możemy to zrobić na podstawie 

znajomości jego energii kinetycznej 
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Korzystając z równań (9) i (10) uzyskamy ostatecznie wzór na siłę nacisku 
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Ciepło wydzielone podczas wyhamowywania koła możemy obliczyć porównując energię 

początkową i końcową. W chwili początkowej koło miało energię kinetyczną ruchu obrotowego a 

w chwili końcowej koło nie poruszało się a więc jedyną energią w układzie było ciepło wydzielone 

podczas tarcia klocka o koło 

 

QEEE K == 21 .          (11) 

Ciepło możemy wyliczyć korzystając z zasady zachowania energii  

KEQEE == 21 .          (12) 



 

Drogę kątową możemy wyliczyć korzystając ze wzoru na drogę w ruchu jednostajnie opóźnionym 
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Podstawiając do wzoru (13) zależność na opóźnienie kątowe (8) otrzymamy  
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Odp. 

Siła nacisku wynosi 
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zad. 2 

Dwie poziome tarcze wirują w przeciwnych kierunkach wokół pionowej osi przechodzącej przez 

ich środki. Momenty bezwładności tarcz wynoszą I1 oraz I2 a ich prędkości kątowe odpowiednio 1 

i 2. Po dosunięciu górnej tarczy do dolnej, obie tarcze (w wyniku zjawiska tarcia) obracają się 

dalej jak jedno ciało. Wyznacz: 

a) prędkość kątową tarcz po złączeniu, 

b) pracę wykonaną przez momenty sił tarcia.  

 

Dane: I1, I2, ω1, ω2 

Szukane: ω3, WT 

 

 

Podzielmy zadanie na dwa etapy. W pierwszym (rys. 1) obie tarcze wirują niezależnie wokół tej 

samej osi obrotu, ich prędkości kątowe mają przeciwne zwroty. W drugim etapie (rys. 2) 

obserwujemy tarcze po jakimś czasie. Tarcza górna opadła na dolną wyniku czego zaczęły trzeć o 

siebie. Po pewnym czasie na skutek zjawiska tarcia tarcze poruszają się jak jeden układ (tę sytuację 

obserwujemy na rysunku 2)). 

 

 

 
Zapiszmy energie i momenty pędów obu sytuacjach (mamy tu do czynienia z ruchem obrotowym 

brył sztywnych) 
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1) W pierwszej sytuacji obie tarcze obracają się niezależnie a więc ich energia całkowita jest równa 

sumie ich energii kinetycznych. Początkowy moment pędu jest równy sumie momentów pędu tarcz. 

Musimy pamiętać, że moment pędu jest wielkością wektorową a więc w tym przypadku istotny jest 

kierunek i zwrot wektora prędkości kątowej. Chcąc zapisać wartość początkowego momentu pędu 

musimy więc uwzględnić zwroty wektorów prędkości kątowych.  

 

22111  IIL −=   - znak minus wynika z faktu, że zwrot wektora prędkości kątowej 2


 

jest przeciwny do zwrotu wektora prędkości kątowej 1


. 

 

2) W sytuacji drugiej tarcze są już połączone tworząc wspólny układ o momencie bezwładności I3 = 

I1 + I2 i obracają się z prędkością kątową o wartości ω3. Energia całkowita będzie równa energii 

kinetycznej ruchu obrotowego układu oraz ciepła wydzielonego podczas wyhamowywania tarcz. 

Moment pędu będzie momentem pędu układu. 

 

Ze względu na to, że w trakcie całej sytuacji nie występują zewnętrze momenty sił możemy 

skorzystać z zasady zachowania momentu pędu 
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a więc prędkość kątowa układu wyniesie 
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Praca wykonana przez momenty sił tarcia będzie równa ciepłu wydzielonemu podczas 

wyhamowywania tarcz WT = Q. Korzystając z zasady zachowania energii możemy zapisać  
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Odp. 

Prędkość kątowa tarcz po złączeniu wynosi 
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Wstęp teoretyczny  

 
 

 



 

 
zad.1  

Płytka wykonuje drgania harmoniczne w kierunku poziomym o okresie T. Spoczywający na tej 

płytce drewniany klocek zaczyna poruszać się (ślizgać) po powierzchni płytki z chwilą gdy 

amplituda drgań przekracza wartość A. Wyznacz współczynnik tarcia statycznego pomiędzy płytką 

a klockiem. Jaką prędkość maksymalną osiągnie płytka jeżeli okres drgań wynosi T a amplituda A. 

Dane jest przyspieszenie ziemskie g. 

 

Dane: T, A, g 

Szukane: μs 



 

Wstęp  

Co to jest współczynnik tarcia statycznego?  

To współczynnik tarcia z którym mamy do czynienia, gdy ciało nie porusza się. Jest on zwykle o 

ok. 20% większy od współczynnika tarcia kinetycznego (związanego ze zjawiskiem tarcia w 

ruchu). 

Jak się przekonać, że współczynnik tarcia statycznego jest większy od współczynnika tarcia 

kinetycznego? 

Łatwo sprawdzić to doświadczalnie. Jeżeli staramy się przepchnąć np. ciężką szafę to najtrudniej 

jest ją ruszyć. Kiedy szafa już się porusza łatwiej nam ją pchać (przypuszczam, że wszyscy znają to 

z własnego doświadczenia). 

 

Jak zapisać wartość siły tarcia statycznego?  

Siłę tę możemy zapisać następującym wzorem 
NSTS FF  .  

Dlaczego w powyższym wzorze nie ma znaku  ' = '?  

Bo siła tarcia statycznego przybiera wartości od 0 do 
maxTF  a więc maksymalna siła tarcia wyniesie 

NSTS FF =
max

. 

Przeanalizujmy to na poniższych przykładach 

 
 

W pierwszej sytuacji siła grawitacji (w tym przypadku siła nacisku) jest równoważona poprzez siłę 

reakcji (sprężystości) podłoża. Nie ma siły tarcia pomimo, że współczynnik tarcia statycznego jest 

niezerowy. 

W sytuacji drugiej wartość siły tarcia statycznego jest równa wartości siły wytwarzanej przez 

człowieka. 

W sytuacji trzeciej wzrosła wartość siły człowieka a więc wzrosła również wartość siły tarcia 

statycznego. Jeżeli jednak siła człowieka będzie większa od maksymalnej siły tarcia statycznego 

maxTSF to szafa zacznie się poruszać i siła tarcia zmniejszy się bo będziemy mieli wtedy do czynienia 

z tarciem kinetycznym. 

 

Po tym nieco przydługim wstępie przejdźmy do zadania. 

 

Wyobraźmy sobie płytkę i spoczywający na niej klocek. Płytka wykonuje poziome drgania o 

amplitudzie A.  Na poniższym rysunku przeanalizujmy wektory przyspieszenia i prędkości płytki w 

różnych położeniach płytki. 
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Zastanówmy się w której z powyższych sytuacji jest największa szansa na poślizg klocka. Myślę, że 

wszyscy intuicyjnie wyczuwamy, że będzie to najbardziej prawdopodobne w skrajnych położeniach 

płytki.  Aby odpowiedzieć na pytanie dlaczego tak będzie narysujmy siły dla czwartej sytuacji. 

 
 

Na powyższym rysunku mamy następujące siły 

- siła grawitacji Fg która jest zarazem siłą nacisku klocka na płytkę FN  

- siła reakcji (sprężystości) podłoża FR (klocek nie opada pod wpływem siły grawitacji bo płytka 

jest wykonana ze sztywnego materiału) 

- siła bezwładności Fb. Jeżeli płytka porusza się w lewą stronę z przyspieszeniem amax to na klocek 

zadziała siła bezwładności o przeciwnym zwrocie (sami to odczuwamy, gdy np. autobus 

gwałtownie ruszy musimy się przytrzymać, aby się nie przewrócić) 

- siła tarcia statycznego FTS która powstrzymuje klocek przed poślizgiem (powoduje, że podąża on 

razem z płytką). 

 

Łatwo się domyślić, że klocek nie wpadnie w poślizg dopóki wartość siły bezwładności będzie 

mniejsza lub równa wartości maksymalnej siły tarcia statycznego. W skrajnym przypadku  
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Skalarnie  

mgFFmaFF sgsNsTSb  ==== maxmax       (2) 

 

gamgma ss  == maxmax         (3) 

 

Aby obliczyć amax skorzystajmy z ogólnego wzoru na przyspieszenie w ruchu harmonicznym (patrz 

wstęp teoretyczny) 

 

)cos(  +−= txa m

2 .          (4) 

 

Znając funkcję cosinus możemy stwierdzić na podstawie powyższego wzoru, że wartość 

maksymalna przyspieszenia wyniesie 

 
2mxa =max              (5) 

gdzie xm to amplituda ruchu harmonicznego (w naszym zadaniu xm = A) a 
T




2
=  to częstotliwość 

kołowa drgań. 

 

Korzystając z równań (3) i (5) możemy zapisać 
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Ile wynosi maksymalna prędkość płytki? 

Skorzystajmy z zależności prędkości od czasu w ruchu harmonicznym 

 

)sin(  +−= txV m
 

 

podstawiając 
T

Axm



2

== ,  ze znajomości funkcji sinus możemy zapisać 
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A
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==max . 

 

Współczynnik tarcia statycznego wynosi 2

24
gT

A
s  =  

a maksymalna prędkość płytki 
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=max . 

 

 

 

 

 

 

 

 



Zad. 2 

Na poziomym, gładkim stole leży, przymocowany sprężyną do ściany klocek o masie M. W klocek 

trafia pocisk o masie m lecący poziomo z prędkością V1. Po zderzeniu, pocisk wbija się i klocek 

wraz z pociskiem wykonuje drgania harmoniczne o amplitudzie A. Wyznacz częstotliwość kołową 

tych drgań.  

 

Dane: M, m, V1, A 

Szukane: ω 

 

Zacznijmy od rysunku. Podzielimy go na dwa etapy, pierwszy tuż przed uderzeniem pocisku a 

drugi tuż po zderzeniu. W zadaniu zakładamy, że tarcie pomiędzy klockiem a stołem jest pomijalnie 

małe. 

 

 
Zapiszmy w obu przypadkach energie i pędy. 
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   11 mVp =     22 VMmp )( +=  

 

Ze względu na to, że nie znamy ciepła nie skorzystamy z zasady zachowania energii. Jeżeli siły 

tarcia są pomijalnie małe (siły zewnętrzne są równe zero) możemy skorzystać z zasady zachowania 

pędu 

2121 VMmmVpp )( +==  

stąd możemy obliczyć prędkość układu tuż po zderzeniu 

Mm

mV
V

+
= 1

2            (1) 

Dalej możemy rozwiązywać zadanie na dwa sposoby. 

 

I sposób 

 

Energia kinetyczna układu po zderzeniu EK2 będzie równa energii całkowitej oscylatora EC (patrz 

wstęp teoretyczny) 
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Podstawiając do powyższego wzoru równanie (1), otrzymamy zależność na stałą sprężystości 
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        (3) 

 

Skorzystajmy teraz z zależności na częstotliwość kołową w ruchu harmonicznym (patrz wstęp 

teoretyczny)  

 

 

 

W naszym przypadku to układ o masie m +M  będzie wykonywał drgania a więc 
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= .           (4) 

Podstawiając równanie (3) do zależności (4) otrzymamy 
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II sposób 

 

Skorzystajmy z zależności na prędkość w ruchu harmonicznym  

)sin(  +−= tAV            (6) 

Jak widać prędkość maksymalna Vmax będzie równa Aω 

 

AV =max .            (7)

      

Wiemy, że tuż po zderzeniu prędkość układu wynosi V2 i jest to prędkość maksymalna (większa nie 

będzie) stąd możemy zapisać 

AMm

mV

Mm

mV
AVV

)(
max

+
=

+
== 11
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Odp.  

Częstotliwość kołowa drgań układu wynosi 
AMm

mV

)( +
= 1 . 

 

Zadania do samodzielnego rozwiązania 

 

zad. S.7.1 

Pozioma platforma drga ruchem harmonicznym w kierunku pionowym z amplitudą A. Oblicz 

najmniejszy dopuszczalny okres drgań platformy, jeżeli przedmioty spoczywające na platformie 

maja przez cały czas pozostawać z nią w stałym kontakcie. Wykonaj rysunek, zaznacz odpowiednie 

wektory. Przyspieszenie ziemskie jest dane – g.  

Odp. 
g

A
T 2=  

 

zad. S.7.2 

 Na sprężynie jest zawieszona drgająca szalka wagi z odważnikami. Okres drgań pionowych jest 

wówczas równy T1. Szalkę zatrzymano i położono na niej dodatkowy ciężarek o masie m tak, że 

m

k
=  



sprężyna wydłużyła się o odcinek x. Jaki będzie okres drgań szalki po tej zmianie? Przyspieszenie 

ziemskie wynosi g.  

Odp. 
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xT
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zad.1  

 

Do probówki o masie m1 nasypano odrobinę śrutu o masie m2 a następnie zanurzono w cieczy tak, 

że pływała pionowo. Jeżeli probówkę delikatnie się naciśnie a następnie puści zacznie wykonywać 

drgania o okresie T. Przyjmując, że drgania nie są tłumione, znajdź gęstość cieczy w której pływa 

probówka. Pole przekroju poprzecznego probówki wynosi s a przyspieszenie ziemskie g. 

 

Dane: m1, m2, T, s, g 

Szukane: ρ 

 

Rozwiązanie 

 Wiemy, że probówka wykonuje nie tłumione drgania w cieczy, ale nie wiemy czy jest to 

ruch harmoniczny. Jeżeli upewnilibyśmy się, że mamy do czynienia z ruchem harmonicznym to 

moglibyśmy posłużyć się znanymi już nam wzorami opisującymi ten ruch. Jak się przekonać czy 

mamy do czynienia z ruchem harmonicznym? Musimy przeanalizować siły działające na probówkę. 

Jeżeli wypadkowa siła jest proporcjonalna do wychylenia to jest to siła harmoniczna a ruch jest 

ruchem harmonicznym. Aby to sprawdzić zaczniemy od rysunków. 

 

 

gF


  - siła grawitacji    x - głębokość zanurzenia probówki w sytuacji 1) 

1WF


 - siła wyporu w sytuacji 1)  x + Δx  - głębokość zanurzenia probówki w sytuacji 2) 

2WF


 - siła wyporu w sytuacji 2) 

 

 

1) W pierwszej sytuacji probówka pływa swobodnie w cieczy (wypadkowa siła jest równa 0). Na 

próbówkę działają dwie siły które się równoważą 

 

gWgWgW FFFFFF =−==+ 111 0
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.      (1) 
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Δx 

x x 

1) 2) 



2) W sytuacji drugiej ktoś nacisnął probówkę zanurzając ją dodatkowo o Δx. Po usunięciu siły 

zewnętrznej (nacisku) probówka zacznie się wynurzać, gdyż wyniku dodatkowego zanurzenia siła 

wyporu wzrosła i teraz nie równoważy się z siłą grawitacji 2Wg FF  . 

Wypadkowa siła pojawiająca się po dodatkowym zanurzeniu będzie równa 

gWwypgWwyp FFFFFF −=+= 22


.       (2) 

W zapisie skalarnym uwzględniono zwroty wektorów (stąd znak "minus") 

Korzystając z równań (1) i (2) możemy zapisać następującą zależność na wartość siły wypadkowej 

12 WWwyp FFF −= .           (3) 

Wartość siły wyporu zgodnie z prawem Archimedesa równa się ciężarowi cieczy wypartej przez 

ciało. Ciężar cieczy QC jest równy jej masie mc pomnożonej przez przyspieszenie ziemskie g. 

gmQ cC = .            (4) 

Masę wypartej cieczy można obliczyć mnożąc objętość części probówki zanurzonej w cieczy V 

przez gęstość cieczy ρ    

Vmc = .            (5) 

Objętości wypartej cieczy w sytuacjach 1) i 2) możemy zapisać następująco 

sxxVxsV )(, +== 21           (6) 

Korzystając z powyższych równań zapiszmy wzór na wartość siły wypadkowej w sytuacji 2) 

gxsgsxxgVgVFFF WWwyp  −+=−=−= )(1212 .   

Ostatecznie 

xgsFwyp =              (7) 

W powyższym równaniu wielkości s, g i ρ są stałe a więc ich iloczyn również jest stały 

constgs = . 

Przyjmując, że powyższy iloczyn jest równy k otrzymamy następujące równanie na siłę wypadkową 

xkFwyp = .           (8) 

Analizując równanie (8) możemy dojść do wniosku, że wypadkowa siła działająca na probówkę jest 

proporcjonalna do jej dodatkowego zanurzenia (również wynurzenia) czyli do Δx. Jest to więc siła 

harmoniczna a k = sρg jest stałą sprężystości. 

Mamy do czynienia z ruchem harmonicznym więc skorzystajmy ze wzoru na okres drgań w tym 

ruchu  
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Odp. 

Gęstość cieczy wynosi 
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2. Na sprężynie zawieszono ciężarek o masie m1 a następnie w wprowadzono go w ruch tak, że 

wykonywał drgania harmoniczne o okresie T1.  Następnie do tej samej sprężyny z ciężarkiem m1 

dołączono dodatkowy ciężarek. Jaka jest masa dodatkowego ciężarka jeżeli tym razem układ 

wykonywał drgania harmoniczne o okresie T2? O ile wydłużyła się sprężyna pod wpływem 

dodatkowego obciążenia? Przyspieszenie ziemskie wynosi g. 

  

Dane: m1, T1, T2, g 

Szukane: m2, x 

 

Rozwiązanie 

 

Zacznijmy od rysunku. 

 

 
 

 

W sytuacji 1) sprężyna jest obciążona ciężarkiem o masie m1 i wykonuje drgania o pewnej 

amplitudzie A oraz okresie T1. 

W sytuacji 2) sprężyna jest obciążona ciężarkami o łącznej masie m1 + m2 i wykonuje drgania o 

pewnej amplitudzie A i okresie T2. Położenie równowagi znajduje się niżej od położenia równowagi 

w sytuacji 1) bo pod wpływem dodatkowego obciążenia sprężyna wydłużyła się o x. 

 

W obu przypadkach mamy do czynienia z drganiami harmonicznymi bo w przypadku sprężyny siła 

jest proporcjonalna do wydłużenia sprężyny. Zapiszmy więc wzory na okresy drgań w obu 

przypadkach 
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Przekształcając wzory możemy otrzymać zależności na stałą sprężystości sprężyny k 
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Przekształcając powyższe równanie otrzymamy masę dodatkowego ciężarka 
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Wydłużenie sprężyny x wyliczymy korzystając z prawa Hooke'a. Dla odkształceń sprężystych 

wydłużenie jest proporcjonalne do działającej siły 

 

kxF =             (4) 

kxgmgmF == 22          (5) 

Przekształcając równanie (5) oraz korzystając z równań (2) i (3) możemy zapisać 
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Odpowiedź 

Masa dodatkowego ciężarka wynosi 
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Zadania do samodzielnego rozwiązania 

 

zad. S_1 

W rurce zgiętej w kształcie litery U znajduje się słup wody o łącznej długości l, przy czym w chwili 

początkowej poziom wody w jednym ramieniu rurki jest wyższy niż w drugim. Jaki będzie okres 

drgań słupa wody jeżeli siły lepkości uznamy za pomijalnie małe? Wykonaj rysunek. Dane jest 

przyspieszenie ziemskie g. 

 

 

Odp.  
g

l
T

2
2=  



 

zad. S_2 

Okres drgań pewnego wahadła matematycznego wynosił T1. Wahadło umieszczono w windzie i 

wprawiono w ruch. Winda zaczęła poruszać się w górę ruchem jednostajnie przyspieszonym. 

Oblicz nowy okres drgań wahadła jeżeli wiadomo, że w ciągu czasu t winda pokonała odcinek s. 

Wykonaj rysunek i zaznacz odpowiednie wektory. Przyspieszenie ziemskie wynosi g. 

Wzór na okres drgań wahadła matematycznego 
g

l
T 2= gdzie l jest długością wahadła. 

Odp. 
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zad. 1  

Na końcach odcinka o długości d umieszczono dwa ładunki o wartościach q+ oraz 2q- ( −+ = qq ). 

Wyznacz w jakich punktach prostej przechodzącej przez obydwa ładunki  

a) natężenie pola elektrycznego jest równe 0 

b) potencjał pola elektrycznego równa się 0 

Pomijamy trywialne rozwiązania +∞ oraz -∞. 

 

Dane: d, q+, 2q- 

Szukane: x 

 

Wstęp teoretyczny 

Zanim przystąpimy do rozwiązywania zadania przypomnijmy sobie jak wyglądają linie sił pola 

elektrycznego pochodzące od ładunków punktowych (dodatniego i ujemnego). Kierunek i zwrot 

wektorów natężenia pola elektrycznego pokrywa się z liniami sił pola. 

 

 

 

 

 

 

 

 

 

 

 

Jak widać linie sił pola elektrycznego (tym samym wektory natężenia pola) będą skierowane "od" 

dodatniego ładunku punktowego oraz "do" ujemnego ładunku punktowego. 

Natężenie pola elektrycznego ładunku punktowego (wielkość wektorowa) można zapisać 

następującym równaniem 

    
r

r

r

q
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= ,  skalarnie   2r

q
kE =  

gdzie 
r

k
04

1
= , k -stała elektryczna zależna od ośrodka, 0 - przenikalność elektryczna próżni,   

r - względna przenikalność elektryczna ośrodka,  q - wartość ładunku, r


- wektor przemieszczenia 

(r to odległość pomiędzy ładunkiem a punktem w którym mierzymy natężenie pola). 



Potencjał pola elektrycznego ładunku punktowego (wielkość skalarna) można zapisać następującym 

wzorem 

      
r

q
kV =  

gdzie r to odległość pomiędzy ładunkiem a punktem w którym mierzymy potencjał pola. 

Rozwiązanie 

a) wykonajmy rysunek i zastanówmy się w których punktach na prostej wypadkowe natężenie pola 

może być równe zero  czyli 02 =+ −+ qq EE


. 

 

 
Musimy pamiętać, że natężenie pola to wielkość wektorowa. Warunkiem koniecznym na to, że 

suma wektorów ma być równa zero są te same kierunki i wartości wektorów, ale ich przeciwne 

zwroty. 

Kierunki wszystkich wektorów na rysunku są takie same (pokrywają się z prostą przechodzącą 

przez ładunki) a zwroty są różne w zależności od punktów w których rozpatrujemy wektory 

natężenia.  

1) W punkcie 1. wektory natężenia pola mają przeciwne zwroty (czyli jest nadzieja na 

wyzerowanie).  Wartość ładunku dodatniego jest mniejsza od ujemnego, ale punkt po lewej stronie 

znajduje się bliżej ładunku dodatniego a więc mniejsza wartość ładunku może zostać 

zrekompensowana przez mniejszą odległość od punktu. W okolicy punktu 1 (czyli po lewej stronie 

ładunku dodatniego) wektory natężenia pola powinny się wyzerować. Musimy wyliczyć ile 

konkretnie wynosi x.  

2) W punkcie 2. czyli pomiędzy ładunkami zwroty wektorów są jednakowe a więc nie ma 

możliwości na wyzerowanie wypadkowego natężenia pola (jego wartość zawsze będzie większa od 

0) 

3) W punkcie 3. wektory natężenia pola mają przeciwne zwroty (czyli byłaby nadzieja na 

wyzerowanie).  Wypadkowy wektor będzie jednak różny od zera bo wartość ładunku dodatniego 

jest mniejsza od ładunku ujemnego a przy tym ładunek dodatni znajduje się w większej odległości 

od punktu 3. niż ładunek ujemny. 

 

Skoro wyeliminowaliśmy punkty pomiędzy ładunkami i po ich prawej stronie, skoncentrujmy się 

na wyliczeniu odległości x. 

Suma wektorów natężeń pól elektrycznych w punkcie 1. ma być równa 0 a więc 

0211 =+ −+ qq EE ,,


 

Przechodząc na zapis skalarny musimy uwzględnić zwroty wektorów.  

0211 =+− −+ qq EE ,,     (znak minus bo zwrot +qE ,1


 jest przeciwny do osi x) 

a więc 

 

 +− = qq EE ,, 121   

możemy zapisać qqq == +−  a więc 
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222 )( dxx +=   

Wiemy, że x > 0 oraz x + d > 0 a więc w powyższym przypadku nie musimy rozwiązywać 

równania kwadratowego, lecz wystarczy równanie obustronnie pierwiastkować. Stąd po 

przekształceniach 

12 −
=

d
x . 

Punkt w którym wypadkowe natężenie pola elektrycznego jest równe zero leży po lewej stronie od 

ładunku dodatniego w odległości 
12 −

=
d

x  od niego. 

 

b) obliczanie wypadkowych potencjałów jest prostszym zadaniem ze względu na to, że potencjał 

jest wielkością skalarną a więc w tym przypadku wystarczy zwykłe sumowanie. Musimy jednak 

pamiętać, że potencjał elektryczny od ładunku ujemnego ma wartość ujemną a od dodatniego 

dodatnią. 

 

Podobnie jak w podpunkcie a) wykonajmy rysunek i zastanówmy się mniej więcej w których 

punktach wypadkowy potencjał mógłby być równy zero czyli 02 =+ −+ qq VV . 

 

 

 
Potencjały −+ qq VV 2,  mają przeciwne znaki a więc warunkiem wyzerowania potencjału w danym 

punkcie jest równość ich wartości bezwzględnych. 

 

1) w punkcie 1. jest szansa na wyzerowanie wypadkowego potencjału. Wprawdzie wartość ładunku 

dodatniego jest mniejsza od wartości bezwzględnej ładunku ujemnego, ale ładunek q+ znajduje się 

bliżej punktu 1. niż ładunek 2q- . 

2) w punkcie 2. jest szansa na wyzerowanie wypadkowego potencjału, ale spodziewamy się, że 

punkt 2. będzie bliżej ładunku q+ (ze względu na to, że jego wartość jest mniejsza od wartości 

bezwzględnej ładunku ujemnego).  

3) W punkcie 3. (na lewo od ładunku ujemnego) nie ma możliwości wyzerowania potencjału bo 

wartość bezwzględna potencjału od ładunku ujemnego będzie zawsze większa od potencjału 

ładunku dodatniego. 

 

Obliczmy więc odległości x1 oraz x2. 

0211 =+ −+ qq VV ,,  

dla wygody możemy zapisać q+ = q oraz 2q- = -2q stąd  

q+ 2q- 

d 

1. 2. 3. 

0211 =+ −+ qq VV ,,   

x1 

x2 

0222 =+ −+ qq VV ,,  0233 + −+ qq VV ,,  
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Po elementarnych przekształceniach otrzymamy 

dx =1 . 

 

Wyliczmy teraz x2 

0222 =+ −+ qq VV ,,  
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Wypadkowy potencjał będzie równy zero w punktach  x1 = d oraz x2 = d/3. 

 

zad. 2 

Cztery ładunki q1 = q+, q2 = q+, q3 = 2q-, q4 = 2q- (gdzie −+ = qq ) umieszczono w rogach kwadratu 

o bokach a (patrz rysunek). Wyznacz wypadkowe natężenie pola elektrycznego oraz potencjał w 

środku tego kwadratu. Wyznacz wektor siły działającej na dodatkowy ładunek ujemny Q- 

umieszczony w środku tego kwadratu? Wyznacz energię potencjalną dodatkowego ładunku 

umieszczonego w tym punkcie. Dana jest stała elektryczna ośrodka k. 

 

Dane: a, q+, 2q-, Q-, k 

Szukane: EW,VW, F, EP 

 

Rozwiązanie 

Natężenie pola elektrycznego to wielkość wektorowa a więc zacznijmy od rysunku.  

Na rysunku 1) przedstawiono wektory natężenia pola w punkcie znajdującym się w środku 

kwadratu. Na rysunku 2) wektory te zsumowano. Wektor wypadkowego natężenia pola można 

zapisać poniższym równaniem 

 4321 EEEEEW


+++= . 

W celu obliczenia wartości wektora EW przejdźmy na zapis skalarny. Musimy jednak pamiętać o 

kierunkach i zwrotach wektorów składowych. 
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Z rysunku widać, że możemy zapisać następującą relację pomiędzy długością (wartością) wektora 

EW oraz sumą długości wektorów E1 i E3 
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po elementarnych przekształceniach otrzymamy wartość wektora natężenia pola w środku kwadratu 

(kierunek i zwrot jak na rysunku) 
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Przystąpmy do obliczeń potencjału wypadkowego VW. Teraz będzie łatwiej bo potencjał to wielkość 

skalarna 
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podstawiając do powyższych równań qqq == 21  oraz qqq 243 −== otrzymamy 
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Wypadkowy potencjał w środku kwadratu wynosi
2

4
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q
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Wyznaczmy siłę działającą na ujemny ładunek Q- który dodatkowo umieszczono w środku 

kwadratu. Jeżeli znamy natężenie pola elektrycznego jest to banalnie proste. 

Skorzystamy z ogólnego wzoru na siłę działającą na ładunek elektryczny q w polu elektrycznym o 

natężeniu E 

 

 

 

stąd  

WEQF
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Wartość wektora siły zapiszemy równaniem 
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Odpowiedzmy jeszcze jaki będzie kierunek i zwrot tej siły.  

 

 

 

Posłużmy się poniższym rysunkiem 

EqF


=  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kierunek siły działającej na ładunek w polu elektrycznym jest zawsze taki sam jak kierunek 

wektora natężenia pola natomiast zwroty są zgodne dla ładunku dodatniego lub przeciwne dla 

ładunku ujemnego. Jest to wyraźnie widoczne we wzorze na siłę. Jeżeli wektor natężenia 

pomnożymy przez ujemną wartość to otrzymamy wektor o tym samym kierunku, ale o przeciwnym 

zwrocie. 

Obliczenie energii potencjalnej ładunku jest najprostsze. Skorzystamy tu z zależności 

 

 

 

 

 

a więc energia potencjalna dodatkowego ładunku w środku kwadratu będzie wynosiła  
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Zważywszy, że ładunek Q- jest ujemny a więc jego energia potencjalna będzie dodatnia 

(wypadkowy potencjał jest ujemny). 

Jak widać znajomość parametrów pola E oraz V w prosty sposób umożliwia nam wyznaczenie 

odpowiednio siły działającej na dowolny ładunek oraz jego energii potencjalnej. 

 

Zadania do samodzielnego rozwiązania 

S_1 

Na końcach odcinka o długości x znajdują się ładunki +4q oraz -2q. Oblicz natężenie i potencjał 

pola elektrycznego w punkcie A leżącym na prostej przechodzącej przez ładunki. Odległość punktu 

A od ładunku +4q wynosi 2x a od ładunku –2q wynosi x. Przenikalność elektryczna ośrodka wynosi 

0. Wykonaj obliczenia i rysunek (zaznacz wektory natężenia pola).  
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S_2 

W 3 wierzchołkach kwadratu o bokach a umieszczono kolejno dodatnie ładunki punktowe q, 2q i q. 

Wyznacz wypadkowe natężenie pola oraz potencjał elektryczny w czwartym wierzchołku 

kwadratu. Jaka byłaby energia potencjalna ładunku punktowego o wartości -Q umieszczonego w 

czwartym wierzchołku? Wykonaj rysunek, zaznacz wektory natężenia pola elektrycznego. 
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Współczynnik przenikalności elektrycznej ośrodka wynosi . Odp. 
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zad. 1  

Pomiędzy okładki próżniowego kondensatora płaskiego równolegle do płytek wpada elektron i 

wylatuje pod kątem α do pierwotnego kierunku. Oblicz prędkość początkową elektronu w chwili 

wejścia do kondensatora. Dane: l - długość okładek kondensatora, U - napięcie (różnica 

potencjałów) pomiędzy okładkami kondensatora, d - odległość między okładkami kondensatora, e- 

ładunek elektronu, m - masa elektronu. Zakładamy, że siły grawitacyjne są pomijalnie małe. 

 

 

Dane: α, l, U, d, e-, m 

Szukane: V0 

 

Krótki wstęp teoretyczny 

 Kondensator to urządzenie służące m.in. do magazynowania ładunku (jest wiele innych 

zastosowań kondensatorów). Czym różni się kondensator od akumulatora? 

Po pierwsze budową a po drugie "możliwościami". 

 Plusem akumulatora jest możliwość zgromadzenia większego ładunku przy tych samych 

gabarytach i wadze co kondensator. Plusem kondensatora jest możliwość szybkiego ładowania i 

rozładowania kondensatora. Patrząc na kondensator elektryczny z punktu widzenia "magazynu" 

ładunku elektrycznego jest to magazyn który możemy stosunkowo szybko zapełnić i rozładować. 

 W smartfonach używamy akumulatorów, które wprawdzie długo się ładuje, ale energia 

elektryczna wystarcza również na długo. W defibrylatorach wykorzystuje się kondensatory, które 

szybko można naładować do pożądanej wartości energii np. 200 J a potem szybko rozładować 

odzyskując zgromadzoną energię elektryczną w krótkim czasie. Tym samym możemy uzyskać dużą 

moc impulsu prądowego. W powyższym zadaniu wykorzystamy wzór na wartość natężenia pola 

elektrycznego E w kondensatorze  

d

U
E = ,  

gdzie U to napięcie między okładkami kondensatora (różnica potencjałów między okładkami) a d to 

odległość między okładkami kondensatora. 

 

 

Rozwiązanie 

Zacznijmy od rysunku. Na poniższym rysunku elektron porusza się poziomo z prędkością o 

wartości V0 po czym wpada pomiędzy okładki kondensatora równoległe do jego pierwotnej 

trajektorii. Ze względu na to, że pomijamy siły grawitacyjne moglibyśmy zorientować rysunek w 

dowolnym kierunku, gdyż nie miałoby to znaczenia. Okładki kondensatora (płytki metalowe) są 

naładowane różnoimiennie. Przyjąłem, że górna okładka jest naładowana dodatnio a dolna ujemnie 

stąd kierunek i zwrot linii sił pola elektrycznego (czarne strzałki) jest z "góry na dół". Mamy w tym 

przypadku do czynienia z polem jednorodnym, czyli wektor natężenia pola elektrycznego jest 

jednakowy w każdym punkcie wewnątrz kondensatora. Jeżeli ładunek znalazł się w polu 

elektrycznym to zadziała na niego siła EqF


= . W naszym konkretnym przypadku na elektron 

zadziała siła EeF


−= . 

Wartość tej siły możemy po prostu zapisać 

 EeF −= .          (1) 

Kierunek siły będzie zgodny z liniami sił pola (z kierunkiem wektora pola elektrycznego) natomiast 

jej zwrot będzie przeciwny do zwrotu wektora natężenia pola (elektron ma ładunek ujemny). 



Jeżeli przyjrzymy się rysunkowi możemy zauważyć, że sytuacja jest zbliżona do ruchu cząstki w 

polu grawitacyjnym. 

 

 
W sytuacji 1) elektron porusza się poziomo z prędkością V0 w polu elektrycznym a więc działa na 

niego siła F równoległa do wektora natężenia pola elektrycznego E, ale o przeciwnym zwrocie. Siła 

ta spowoduje przyspieszanie ładunku w kierunku pionowym, ale nie ma wpływu na prędkość 

poziomą (jest do niej prostopadła). Trajektorią lotu elektronu będzie więc parabola tak jak to 

obserwowaliśmy w polu grawitacyjnym. W punkcie 2) (u wylotu kondensatora) elektron ma już 

nową prędkość (zmiana wartości, kierunku i zwrotu) gdyż podczas lotu przez cały czas działała siła 

F nadając elektronowi pionowe przyspieszenie. 

Przystąpmy do obliczeń. 

W kierunku poziomym elektron poruszał się ze stałą prędkością V0. W tym wypadku możemy 

zapisać następującą zależność na prędkość ładunku (ruch jednostajny) 

t

l
V =0  gdzie t jest czasem przelotu elektronu przez kondensator.     (2) 

W kierunku pionowym będziemy mieli ruch jednostajnie przyspieszony stąd zależność na prędkość 

końcową w kierunku pionowym (położenie 2) 

atVy =  gdzie a jest przyspieszeniem elektronu.       (3) 

Na rysunku widać, że możemy zapisać następującą zależność 
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Spróbujmy wyliczyć prędkość Vy korzystając ze wzoru (3). Na początek wyznaczmy przyspieszenie 

elektronu a. Możemy to zrobić posługując się II zasadą dynamiki Newtona F = ma stąd 

m

F
a = .            (5) 

Podstawiając równanie (1) do wzoru (5) uzyskamy 
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paraboliczna trajektoria lotu 

styczna do trajektorii lotu w 

punkcie końcowym 
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Teraz skorzystamy ze wzoru na natężenie pola elektrycznego wewnątrz próżniowego kondensatora 

płaskiego (patrz wstęp teoretyczny) 

d

U
E = .            (7) 

Podstawiając powyższe równanie do wzoru (6) otrzymamy ostatecznie wzór na wartość 

przyspieszenia elektronu 
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Czas przelotu elektronu możemy wstępnie zapisać przy pomocy przekształconego równania (2) 

0V

l
t = .            (9) 

Podstawmy teraz zależności  (8) i (9) do równania (3)  
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Po podstawieniu powyższego wzoru do równania (3) uzyskamy 

2

00 mdV

Ule

V

V
tg

y
−

==  

a stąd wzór na prędkość początkową elektronu 
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Ze względu na dosyć złożony wzór i połączenie różnych wielkości dla pewności wykonajmy 

jeszcze rachunek jednostek. 
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Odp.  

Prędkość początkowa elektronu wynosiła 
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