
Kinematyka

Fizyka



Ruch jest najczęściej obserwowanym zjawiskiem fizycznym 

wokół nas. Poruszają się zwierzęta, światło, maszyny, 

samochody, Ziemia, Księżyc, satelity, elektrony w przewodniku, 

i wiele innych ciał.

Na ruch ciała mają wpływ inne ciała znajdujące się w otoczeniu. 

Ażeby dokładnie opisać ruch konieczne jest uwzględnienie 

oddziaływania ciał z otoczeniem.

Istnieją pewne ogólne prawa i zasady stosujące się do wszelkich 

ruchów ciał materialnych, niezależnych od oddziaływania tego 

ciała z otoczeniem.

Kinematyka punktu materialnego



Dział mechaniki, który podaje opis przestrzenno-czasowych 

właściwości ruchu nazywamy kinematyką, przy czym 

zaniedbujemy tutaj przyczyny powodujące ruch.

Badaniem ruchu z uwzględnieniem jego przyczyn, zajmuje się 

dynamika.

1.2 Układy odniesienia

Zdarzenie fizyczne w określonym miejscu definiujemy przez 

podanie dokładnej informacji o miejscu i czasie, w którym to 

nastąpiło.
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Ażeby opisać dwa zdarzenia obserwator musi zarejestrować 

miejsce każdego z nich, oraz odpowiedni czas.
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określają wektor przesunięcia dla tych zdarzeń, oraz 

przedział czasowy pomiędzy nimi. 

Wektor r określa odległość między zdarzeniami i i f, oraz 

kierunek od i do f. 

Okazuje się, że wektor przesunięcia może być taki sam dla kilku 

różnych obserwatorów umiejscowionych w różnych miejscach



Jeśli mamy trzech obserwatorów, których względna pozycja się nie 

zmienia, każdy z nich określi zdarzenie i i f przez inne wektory. 

Jednak przesunięcie od punktu i do f będzie dla wszystkich 

obserwatorów takie same. Również czas jaki upłynie od zdarzenia 

i do f będzie dla wszystkich obserwatorów taki sam.

A B
CriA

rfA riB

rfB

if



Możemy stwierdzić ogólnie, że każdy inny obserwator D nie 

zmieniający swojej pozycji względem obserwatorów A, B i C

zaobserwuje to samo przesunięcie się np. satelity r i ten sam 

przedział czasu pomiędzy i a f. 

Ten zbiór obserwatorów określa pewien układ odniesienia.

Możemy więc powiedzieć, że układem odniesienia nazywamy 

zbiór obserwatorów znajdujących się w stałych pozycjach 

względem siebie.

Obserwatorzy, którzy znajdują się względem siebie w ruchu nie 

należą do tego samego układu odniesienia ( na przykład spadające 

jabłko widziane z zewnątrz i z jabłka).

Rozważmy jeszcze obserwatora O, który ulega przemieszczeniu 

S względem nieruchomego obserwatora C w pewnym układzie

odniesienia między chwilami ti i tf , nie należy do tego układu 

odniesienia.



Układ odniesienia może być opisany przez odpowiedni układ 

współrzędnych, w którym obserwatora identyfikuje się przez 

współrzędne. Spośród wszystkich układów odniesienia wyróżniają 

się tzw. układy inercjalne.

Układ odniesienia nazywamy inercjalnym, jeżeli każda 

cząstka znajdująca się w tym układzie w spoczynku 

pozostaje w spoczynku, a każda cząstka, która się w tym 

układzie porusza, nie zmienia ani prędkości ruchu, ani jego 

kierunku

Przemieszczenie, oraz przedziały czasowe, są fundamentalnymi 

wielkościami nauki o ruchu, czyli kinematyki.  



1.3  Położenie i tor

Jeżeli w odpowiednim układzie współrzędnych chcemy podać 

położenie punktu to możemy to uczynić definiując tzw. wektor 

wodzący, albo też wektor położenia.
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Promień wodzący 

r możemy podać w 

różny sposób:
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ĵ



kkiz

jjiy

iiix

z

y

x

ˆˆ

ˆˆ

ˆˆ

0

0

0













Wersory możemy również zapisywać na różne sposoby. W 

trakcie tego wykładu używać będziemy wersji  drugiej, czyli i  z 

daszkiem.

x, y i z są współrzędnymi kartezjańskimi. Współrzędne punktu P 

możemy również zapisać we współrzędnych sferycznych.
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Gdy położenie obserwowanego obiektu się zmienia, promień 

wodzący r staje się funkcją czasu:
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Równania współrzędnych zależnych od czasu są następujące:
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Równania te są równocześnie równaniami parametrycznymi toru.



W zależności od tego, czy tor jest linią krzywą czy prostą, 

mówimy o ruchu krzywoliniowym lub prostoliniowym.
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Eliminując czas z 

równań parametrycznych, znajdujemy 

kształt toru zakreślanego przez poruszający 

się punkt P
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1.4 Prędkość średnia

Rozważmy osobę obserwującą lot ptaka i znajdująca się w 

początku pewnego układu współrzędnych.
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r

W czasie t = tf – ti  ptak

przemieścił się o

r = rf – ri .

Średnią prędkością nazywamy

wektor zdefiniowany 

następująco:
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Kierunek tej prędkości jest zgodny z kierunkiem wektora r .



Przykładem ruchu dla którego celowe jest określenie prędkości 

średniej jest ruch samochodu w mieście. Nie zawsze „zielona 

fala” umożliwia ruch samochodu ze stałą prędkością.

Powyższa animacja pokazuje taką sytuację. 



Rozważmy również jaka będzie prędkość pływaka, który skacze 

do wody i płynie tam i z powrotem.
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Średnia prędkość dla pływaka 

jest równa zero, wynika to z 

wektorowego charakteru 

prędkości średniej.

W takich przypadkach podaje 

się jako prędkość średnią 

wartość skalarną. 
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Prędkość i przyśpieszenie

Bardzo często interesuje nas prędkość jakiegoś ciała w 

konkretnym punkcie P. W jaki sposób możemy ją obliczyć?
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Każdorazowo konstruujemy

wektor prędkości średniej
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Gdy skracamy nieograniczenie

odstęp czasu t  0, wartość bezwzględna wektora r / t dąży do

pewnej wartości granicznej.



Kierunek tego wektora dąży do kierunku stycznej do toru w 

punkcie P.

Wektor, do którego dąży wektor prędkości średniej gdy 

tn 0 nazywamy prędkością v ciała w punkcie P.

dt

rd

t

r
v

t










 0
lim (1.3)

Możemy więc napisać
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Wektor prędkości możemy również rozłożyć na składowe:
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Przy czym
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Składowe wektora prędkości są pochodnymi współrzędnych 

poruszającego się ciała względem czasu.

Bezwzględną wartość prędkości określamy w oparciu o 

definicję długości wektora.
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Możemy jeszcze znaleźć zależność pomiędzy prędkością a 

drogą przebytą przez ciało.
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W układzie kartezjańskim:
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Otrzymujemy więc na drogę przebytą przez ciało wyrażenie:

 
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Z drugiej strony ze wzoru (1.3) otrzymujemy:
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Czyli otrzymujemy:
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Ponieważ prędkość ciała może się zmieniać, istnieje pewna 

wielkość informująca nas o wielkości tej zmiany zarówno co 

do wartości jak i kierunku. 

Wielkość tą nazywamy przyśpieszeniem.

Rozważmy ciało poruszające się po dowolnym torze z 

jakąś prędkością.
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Z rysunku widzimy, że w stosunku do punktu P1 w punkcie P2

nastąpił pewien przyrost prędkości v w czasie t. Średnie 

przyśpieszenie definiujemy jako:
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Skracając czas obserwacji zbliżamy punkt P2 do P1 . Wektor
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dąży do pewnego wektora a, który nazywamy

przyśpieszeniem ciała.
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W układzie współrzędnych kartezjańskim możemy wektor 

przyśpieszenia napisać jako sumę składowych. 
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Przyśpieszenie możemy rozłożyć na dwie składowe, styczną i 

normalną do toru.
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Składowa normalna odpowiada za to, 

że tor ciała nie jest prostoliniowy



2.  Przykłady ruchu

Głównym zadaniem kinematyki jest znalezienie przyszłej pozycji 

ciała i jego prędkości w oparciu o bieżące wartości pozycji, 

prędkości i przyśpieszenia.

Znamy już odpowiednie równania, które pozwalają na określić dla 

określonego czasu t chwilowe wartości prędkości i przyśpieszenia.

Kinematyka jest działem mechaniki zajmującym się opisem 

ruchu. 
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Bardzo często mamy do wykonania zadanie odwrotne. Znając 

przyśpieszenie ciała musimy znaleźć prędkość, położenie ciała, 

oraz równanie toru. W oparciu o równanie  (2.2) przez operację 

całkowania znajdujemy prędkość.
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Każde z powyższych równań wektorowych jest równoważne 

trzem równaniom skalarnym dla poszczególnych składowych 

wektorów prędkości, przyśpieszenia i położenia.



Sprowadza się to do całkowania równań skalarnych.

Stałe całkowania C i C’ wyznacza się z tzw. warunków 

brzegowych, określających prędkość i położenie w chwili t0.

2.2 Ruch prostoliniowy

Jeżeli tor ruchu ciała jest linią prostą, to zawsze możemy tak 

dobrać układ współrzędnych, aby jedna z jego osi pokrywała 

się z torem. Zwykle wybiera się oś x. 
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Prędkość ciała i jego przyśpieszenie wynoszą odpowiednio:

xx

x

i
dt

tdv
i

dt

txd
ta

i
dt

tdx
tv

ˆ)(ˆ)(
)(

ˆ)(
)(

2

2









.

Jeśli wektory przyśpieszenia i prędkości mają zwroty zgodne, 

mówimy o ruchu przyśpieszonym, a jeśli przeciwny mówimy o 

ruchu opóźnionym.

Skalarna wartość prędkości (szybkość) jest równa

dtvdx
dt

dx
v  .

Równanie z prawej strony strzałki możemy scałkować.



   dtvdx (2.4)

Jeśli zaczynamy badać ruch ciała w chwili t0 i jeżeli zajmuje 

ono wtedy pozycję x0 , to możemy obliczyć całkę oznaczoną:
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Znak prędkości zależy od tego, 

czy ciało porusza się w kierunku 

x, czy przeciwnie.

Analogicznie mamy:

dtadv
dt

dv
a  .

Wartość prędkości otrzymujemy z całkowania;
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Równocześnie z zależności

dtadv

dtvdx
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 otrzymujemy 

zależność;
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Po scałkowaniu otrzymujemy:
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2.2.1  Ruch jednostajny

Ruch jednostajny, jest to taki ruch, w którym prędkość jest 

stała, v=const.

Ze wzoru (2.5) otrzymujemy;
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.

x jest przebytą przez ciało drogą, którą zwykle oznaczaliśmy 

przez s.

Wykres drogi od czasu ma więc postać:



s

tt0

x0



Im większa prędkość tym większe nachylenie prostej na 

wykresie zależności drogi od czasu



Ruch jednostajnie zmienny jest to ruch ze stałym 

przyśpieszeniem a = const. Gdy a > 0 ruch nazywamy 

przyśpieszonym, a gdy a < 0 ruch jest opóźniony.

2.2.2 Ruch jednostajnie zmienny

Ruch jednostajnie opóźniony



W celu wyliczenia prędkości z jaką porusza się ciało musimy rozwiązać 

równanie:
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Ruche jednostajnie przyspieszony



Uzyskana w chwili t prędkość ciała poruszającego się ze stałym 

przyśpieszeniem jest liniową funkcją czasu.

Jeśli chcemy policzyć drogę przebytą przez takie ciało, 

wstawiamy ostatnie wyrażenie do wzoru (2.8) . Otrzymamy 

wynik:
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Wyliczając całki w ostatnim równaniu otrzymujemy:
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Po krótkich przekształceniach otrzymujemy:
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Droga w ruchu jednostajnie np. przyśpieszonym jest 

kwadratową funkcją czasu.

(2.9a)
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Lub jeśli wybierzemy taki układ odniesienia, że początek ruchu jest w 

punkcie zero i stoper włączamy w chwili czasu 0 



t

s=x

x0

v0t

1/2at2

Wykres przedstawiający drogę którą ciało 

przebywa w czasie t przy założeniu, że t0 = 0.

Narysujmy drogę którą ciało przebywa w czasie t przy 

założeniu, że t0 = 0.



2.3  Ruch ze stałym przyśpieszeniem

Całkując wzory definiujące prędkość i przyspieszenie 

otrzymujemy wyrażenia:

)( 00 ttavv 


(2.10)

2

0000 )(21)( ttattvrr 


(2.11)

Jednym z najczęstszych obserwowanych ruchów jest ruch 

w pobliżu powierzchni Ziemi z przyśpieszeniem g=const.

Rozważmy następujący przypadek.



x

y

g = -g iy

v0

H



W polu ciężkości na wysokości H wyrzucamy pod kątem 

do poziomu z prędkością v0 jakieś ciało.

Możemy tu rozróżnić następujące przypadki:



1. H=0 =900 v00 rzut 

pionowy

2. H0 =00 v00 rzut 

poziomy

3. H0 =-900 spadek

swobodny

4. H=0

H0

>0

<0

v00

v00

rzut

ukośny

Tabela 1



Spadek swobodny



2.3.1   Rzut poziomy

Rzut ten jest przypadkiem 2 w Tabeli 1.

Kula armatnia została wystrzelona poziomo ze stałą prędkością 

v0x=100 m/s. Kula spadła na ziemię w odległości 1200 m od 

miejsca wystrzelenia . Pytamy się o długość drogi pionowej jaką 

przebyła kula przy zaniedbaniu oporu powietrza.

x

y

x = 1200 m

y = ?





Ponieważ ruch poziomy jest ruchem jednostajnym, odległość jaką pocisk 

przebył znajdujemy z wzoru (2.8). Zakładając, że x0 = 0, oraz t0 = 0, mamy:

x = v0x t, czyli t=x/v0x=1200m/100m/s = 12 s.

Zauważmy, że rozważaliśmy ruch poziomy niezależnie od ruchu 

pionowego aby wyznaczyć czas lotu kamienia.

Ruch pionowy jest spadkiem swobodnym, dla którego mamy:

v0y = 0 oraz ay =-g =-9.81 m/s2. 

Z równania (2.9a) dla ruchu w kierunku osi y mamy

y = -1/2 g t2 = -1/2 · 9.81 m/s · (12m)2 = 706.32 m

Zauważmy, że rozważaliśmy ruch pionowy niezależnie od ruchu 

poziomego aby wyznaczyć wysokość spadku kamienia.

Niezależność tych dwóch ruchów implikuje, że pocisk przy  v0x = 0 w czasie

12 s spadnie o 706.32 m.



Policzmy jeszcze trajektorię ruchu.  Skorzystamy z równania (2.9a) , oraz 

wyliczonego czasy ruchu t=x/v0x . Dla ruchu wzdłuż osi y z podanym czasem 

ruchu i warunkiem t0 = 0 , otrzymujemy:

2

2

00x

0y

2

1

v

v
y x

v

g
x

x









 











 (2.12).

Jest to równanie 

paraboli.

Ogólnie można powiedzieć, że 

paraboliczna trajektoria jest 

charakterystyczna dla ruchów ze stałym 

przyśpieszeniem.

Składowe ruchu możemy traktować 

niezależnie zgodnie z zasadą 

niezależności ruchu.



Prędkość 

początkowa

Wysokość

początkowa

Ta sama prędkość 

początkowa z różnych 

wysokości

Ta sama wysokość, 

różne prędkości 

początkowe



2.3.2   Rzut ukośny

Jest to przypadek, dla którego zgodnie z Tabelą 1 ,                   

H = 0 lub H  0, 0 <  < 900, v0  0.
y

x

v0



Składowe prędkości 

początkowej wynoszą: 



sin

cos

00

00

vv

vv

y

x









Wstawiając te wartości do wzoru (2.12) otrzymujemy:

2

22

0

2

22

00

0

cos2

cos2

1

cos

sin

x
v

a
tgxy

x
v

a

v

v
xy

y

y










































(2.13)

Wiemy przy tym, że ay = -g. Mamy więc równanie typu:

2BxAxy 

Ciało w rzucie ukośnym porusza się więc po paraboli.

Wiemy, że w rzucie ukośnym parametryczne równania ruchu 

są zapisane następująco:



2

0

0

2

1
)(

)(

tgtvty

tvtx

y

x





(2.14)

Rzut ukośny charakteryzują następujące wielkości:

1. Zasięg rzutu,

2. Maksymalna wysokość

Zasięg rzutu otrzymamy licząc odległość poziomą x dla y=0.

0
cos2

2

22

0

 x
v

g
tgx 

Równanie to ma dwa rozwiązania:




2sin
cos2

0

2

0

22

0
2max

1

g

v

g

tgv
xx

x










Maksymalną wysokość rzutu otrzymamy licząc maksimum 

funkcji przedstawiającej równanie toru, czyli dla dy/dx=0.

0
cos2

2
22

0

 x
v

g
tg


 Otrzymujemy

więc: max

2

0

2

1
2sin

2
x

g

v
x   .

Podstawiając wyrażenie na x do równania (2.13), 

otrzymujemy na maksymalną  wysokość poruszającego się 

rzutem ukośnym wartość:

2
2

0
max sin

2g

v
y  .

Widzimy z podanych wzorów, że zarówno maksymalny 

zasięg rzutu jak i maksymalna wysokość rzutu zależą od 

wartości i kierunku prędkości początkowej.



Wysokość rz.:
g

v
y

2

sin 22

0
max




Zasięg rz.:
g

v
x

2sin2

0
max 

Tor ruchu przedstawia przesuniętą

parabola o współrzędnych 

wierzchołka:
  










g

v

g

v
yx

2

sin
;

cossin
;

22

0

2

0
00





Zarówno w rzucie poziomym jak i ukośnym wyrzucaliśmy 

ciało ze stałą prędkością początkową. Wiedząc, że w kierunku 

pionowym działa przyśpieszenie ziemskie g, możemy 

rozważyć jakie są składowe tego przyśpieszenia.

Rysując część toru ciała w rzucie ukośnym mamy:

v

vx

vy

g

an

at

Zauważmy, że w każdym 

punkcie toru zachodzi:

x

y

n

t

x

y

v

gtv

a

a

v

v

0

0 
 .

Przy czym:
constgaa tn  22 .

W najwyższym punkcie toru at = 0, a an = g.



Należy jeszcze wspomnieć o szczególnym przypadku rzutu 

ukośnego, a mianowicie rzutu pod kątem  = 900 z prędkością 

początkową v0. Taki przypadek nazywamy rzutem pionowym.

v0

v = g t

Przebywana w czasie t droga wynosi:

2

0
2

1
gttvs 

Maksymalną wysokość uzyskamy z 

warunku 
00  gtv

dt

ds .

Czas ruchu ciała do maksymalnej wysokości h wynosi więc:  

,  a uzyskana maksymalna wysokość                    .         
g

v
t 0

g
v

h
2

2

0



zagadka



Spadek swobodny demonstracje


