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Drgania



Równanie ruchu harmonicznego
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Szukamy funkcji x(t), która spełni to równanie



Równanie ruchu harmonicznego
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Wielkości opisujące ruch harmoniczny
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Przykłady ruchu harmonicznego



Ruch harmoniczny a ruch po okręgu



Przykłady ruchu harmonicznego



Przykłady ruchu harmonicznego



Różnica faz między położeniem, 

prędkością i przyspieszeniem
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Energia potencjalna w ruchu harmonicznym
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Energia kinetyczna w ruchu harmonicznym
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Energia całkowita w ruchu harmonicznym
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Zmiany energii



Zmiany energii



Drgania harmoniczne tłumione



Drgania harmoniczne tłumione
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Częstość mniejsza 

od częstości własnej.
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 - współczynnik tłumienia
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Drgania harmoniczne tłumione

Tłumienie zwiększa okres:
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Logarytmiczny dekrement tłumienia

Amplitudy dla kolejnych okresów drgań: 
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Drgania harmoniczne tłumione
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Zachodzą drgania, których charakter zależy od wartości 

współczynnika tłumienia.022  

Układ nie wykonuje drgań, ale wraca do stanu 

równowagi w sposób aperiodyczny.
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Układ nie wykonuje drgań (tłumienie krytyczne) 

następuje jedno przejście przez położenie równowagi
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Drgania harmoniczne tłumione



Drgania harmoniczne wymuszone
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Amplituda zależy od tej różnicy



Rezonans

Największa wartość amplitudy, gdy: 00 
wd

dA



beta

22

2

2
2 2

2
 

m

b
w

wtedy:

file:///D:/drga5.xls
file:///D:/drga5.xls


Rezonans



Rezonans



Rezonans



Parametry krzywej rezonansowej
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Dokładniejsza analiza krzywej rezonansu wykazuje, 

że nie jest ona symetryczna.



Krzywa fazowa rezonansu

kąt fazowy  zmienia się z częstością drgań oscylatora
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Kąt ten jest zawsze ujemny, co oznacza, że wychylenie jest 

zawsze opóźnione w stosunku do siły wymuszającej. Dla 

częstości równej 0 przesunięcie to wynosi 900. Dla dużych 

częstości wychylenie może być przeciwne do siły wymuszającej, 

czyli 1800.



Współczynnik dobroci oscylatora 
harmonicznego

Dla układów drgających, a w szczególności elektrycznych 
mówi się często o współczynniku dobroci Q.

Współczynnik ten definiuje się jako odwrotność względnej 
straty energii przypadającej na jeden okres
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Można pokazać, że dla oscylatora harmonicznego tłumionego 

drgającego zgodnie z równaniem (10.8) jest dla przypadku gdy 
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Moc absorbowana przez układ 
drgający
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Krzywa rezonansowa średniej absorbowanej mocy spada do zera po obu 

stronach częstości rezonansowej. Szerokość

linii rezonansowej decyduje o ostrości tej linii.

0 0

2 1 1

Q



  


 Zachodzi również;

.



Składanie drgań równoległych
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Składanie drgań równoległych



Składanie drgań równoległych

Dudnienia
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Składanie drgań  prostopadłych

Gdy częstości równe i  = 0:
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Składanie drgań  prostopadłych

Gdy częstości równe i  = ±/2:
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Figury Lissajou

wx/wy = nx /nyStosunek liczby stycznych do obu boków:
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Przykłady ruchu harmonicznego 
Wahadło

l - odległość punktu zawieszenia O od 

środka masy ciała C, 

J - kąt odchylenia ciała od pionu, 

e - przyspieszenie kątowe ciała, 

I - moment bezwładności ciała 

względem punktu zawieszenia, 

m - masa ciała, 

g - przyspieszenie ziemskie.



Wahadło

Dla małych kątów: gdzie:



Wahadło

l’ – długość zredukowana
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Jeśli rurkę o kształcie U i stałym przekroju S

napełnimy cieczą o gęstości , ustala się po 

pewnym czasie równowaga dla której poziom 

cieczy określa linia przerywana. Słup cieczy w 

kształcie litery U ma długość l. Jeśli w jednej 

rurce przesuniemy o y

poziom cieczy, powstaje różnica poziomów 

2y między rurkami. Ciężar wystającego słupa 

cieczy o masie m2y powoduje pojawienie się 

siły zwrotnej. Zgodnie z prawem Newtona 

mamy;
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Przykłady ruchu harmonicznego-
ciekłe wahadło



Nadmiarowa masa wynosi;
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Równanie różniczkowe dla drgającej cieczy ma postać,
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Rozwiązanie tego równania jest następujące;
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Układ ten składa się z połączonych

równolegle pojemności C i 

indukcyjności L. Jeśli zamkniemy 

obwód po naładowaniu 

kondensatora C, to spełniony musi 

być warunek; 0L CV V 

.

Możemy więc zapisać, że;

Po podstawieniu za I pochodnej ładunku po czasie 

otrzymujemy następujące równanie,
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Elektryczny układ drgający



Jest to równanie oscylatora harmonicznego o częstości
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