
Fizyka

Fale



Falą nazywamy pewne zaburzenie w ośrodku sprężystym 

poruszające się  kierunku np. x ze stałą prędkością. 

Zaburzenie to może zachodzić w kierunku równoległym do 

kierunku rozchodzenia, mamy wtedy do czynienia z falą podłużną, lub w 

kierunku prostopadłym do kierunku rozchodzenia,  mówimy wtedy o fali 

poprzecznej.

Prędkość rozchodzenia się fal zależy od gęstości i własności sprężystych ośrodka.
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E




Dla fali podłużnej w pręcie, E jest modułem 

sprężystości.

v





Dla fali poprzecznej w pręcie, 

 jest modułem sztywności.
Długość fali

Ruch falowy- Fala jednowymiarowa



Przykłady ruchu falowego



Przykłady ruchu falowego



Przykłady ruchu falowego



Najmniejszą odległość między drgającymi punktami znajdującymi się w tej 

samej fazie nazywamy długością fali.

Miejsca geometryczne punktów do których doszło zaburzenie nazywamy 

czołem fali.

Geometryczny kształt czoła fali określa typy fal;

Promień fali określa nam kierunek wzdłuż którego rozchodzi się zaburzenie.

jeśli jest to płaszczyzna, mamy falę płaską,

jeśli jest to sfera, mamy falę kulistą

Czoło fali

Promień fali

Wielkości fizyczne opisujące falę



,

.

Ze względu na kierunek drgań w stosunku do kierunku 

rozchodzenia się fali możemy mieć fale poprzeczne i podłużne.

Rodzaje fal

Ze względu na kształt czoła fali możemy mieć fale płaskie i 

kuliste.

Ze względu na charakter zaburzenia fale mogą być skalarne

(np. fala dźwiękowa w powietrzu) lub wektorowe (np. fala 

świetlna).

Możemy mieć również fale spolaryzowane (drgania

zachowują stały kierunek w stosunku do kierunku 

rozchodzenia się fali)



Najprostszym do opisania a jednocześnie bardzo często spotykanym rodzajem 

fal są fale harmoniczne, które można opisać równaniem

( , ) sin ( v )x t A k x t  

gdzie k jest stałą dodatnią.

Ustalenie położenia lub czasu prowadzi do sinusoidalnego zaburzenia  . Fala 

jest okresowa zarówno w przestrzeni jak i w czasie. Odległość po której 

powtarza się (okres) zaburzenie przestrzenne nazywamy jak już 

powiedzieliśmy długością fali i oznaczamy przez . Zmiana położenia o 

długość fali nie zmienia zaburzenia  .

( , ) ( , )x t x t   

Fale harmoniczne



( , ) ( , )x t x t T  

czyli, sin ( v ) sin [ v( )] sin[ ( v ) 2 ]k x t k x t T k x t       

Wynika stąd, że
v 2k T 

Wiedząc, że wszystkie powyższe wielkości są dodatnie, otrzymujemy

v
T




Odwrotnością okresu T jest jak wiadomo częstotliwość f;

1
f

T


Dla fali definiujemy jeszcze częstość kątową  i częstość przestrzenną . 

Przy czym,

Fale harmoniczne



2 1

T


 


 

Zdefiniowane wielkości charakteryzujące fale harmoniczne dotyczą również fal 

nieharmonicznych, jak długo przedstawiają one pewne periodyczne zaburzenia.

Rozpatrzmy dowolną funkcję harmoniczną:

 (x, t) = A sin (kx - t) 

Cały argument funkcji sinus nazywamy fazą (kątem fazowym ) , tak, że

kx t   .

Faza i prędkość fazowa.



W tym zapisie dla kąta fazowego  = 0 ( czyli dla t=0, x=0) wartość zaburzenia jest 

też równa zero. Tak nie zawsze musi być, dlatego wprowadza się fazę początkową 
tak, że ogólna postać równania przyjmuje postać:

(x, t) = A sin (kx  - t + )   

Faza (kąt fazowy) powyższego zaburzenia można podać w 

następującej postaci:

(x, t) = (kx - t + )   

.

.

Faza ta jest funkcją położenia i czasu. Zmianę fazy w czasie przy stałym 

położeniu definiuje prędkość kątową .

.















xt

Faza i prędkość fazowa



Z kolei zmiana fazy w funkcji położenia dla ustalonego czasu 

prowadzi do równania;

t

k
x

 
 

  .

W oparciu o własności pochodnych cząstkowych możemy napisać;

( / )

( / )

x

t

tx

t x





   
 

    

Lewa strona tego równania przedstawia prędkość rozprzestrzeniania się 

zaburzenia dla stałej fazy. Uwzględniając poprzednie równania otrzymujemy;

x
v

t k

 
    

 

Faza i prędkość fazowa

Powyższy wzór definiuje prędkość z którą 

porusza się zaburzenie. Jest to tzw. prędkość 

fazowa.



Nazwa Długość

fali

Liczba

falowa

okres Częstotli

wość

Częstość

kołowa

prędkość

symbol  k T f  v

definicja 2/  = k 1/T = f 2f = 

Zależności

kinematyczne
 = v T            f  = v             /k = v

Równoważne

Zapisy

Równania

fali

( , ) sin[2 / ( v )]

( , ) sin[2 ( / / )]

( , ) sin( )

x t A x t

x t A x t T

x t A kx t

  

  

 

 

 

 

Zależności występujące pomiędzy wielkościami 

charakteryzującym falę można zsumować w następującej tabelce



Interferencja fal



W ośrodku mogą równocześnie rozchodzić się drgania wychodzące z różnych 

centrów drgań. Fale te tworzą nową falę.

Rozważmy dwie fale o tej samej częstości, amplitudzie rozchodzące się w 

tym samym kierunku.

1

2

( , ) sin( )

( , ) sin( )

x t A t kx

x t A t kx

  

 

  

 

Dodając te fale do siebie otrzymujemy;

1 2( , ) ( , ) ( , )

[sin( ) sin( )]

x t x t x t

A t kx t kx

  

  

 

    

Interferencja fal



( , ) 2 cos sin( )
2 2

x t A t kx
 

   

Amplituda Zależność od czasu i 

położenia

W zależności od różnicy fazy mamy do czynienia ze wzmocnieniem lub 

osłabieniem fali pierwotnej.

(x)

1(x

)

2(x

)

(x) =1(x)+ 2(x)

Przesuniecie

fazowe

Interferencja

konstruktywna

.



(x)

1(x)

2(x)

(x) =1(x)+ 2(x)

Przesuniecie

fazowe

Interferencja

destruktywna

Interferencja fal



Odbicie fali

Na granicy ośrodków następuje 

odbicie fali. Fala odbita może 

być przesunięta w fazie lub nie 

w stosunku do fali padającej w 

zależności od własności obu 

ośrodków.



Odbicie fali



Powstanie fali stojącej jest szczególnym przypadkiem interferencji. Fala stojąca 

powstaje przez interferencję dwóch fal o przeciwnych kierunkach rozchodzenia 

się.  Może to być np. interferencja fali padającej z falą odbitą. Rozważmy taki 

przypadek.

1

2

( , ) sin( )

( , ) sin( )

x t A t kx

x t A t kx

 

  

 

  
.

W wyniku interferencji otrzymujemy falę o postaci;

1 2( , ) ( , ) ( , )

[sin( ) sin( )]

x t x t x t

A t kx t kx

  

  

 

    
.

Fala stojąca



W wyniku otrzymujemy falę;

)
( , ) 2 sin( cos( )

2 2
x t A t kx

 
   

Zależność od czasu Zależność od położenia

.

Dla struny napiętej pomiędzy dwoma punktami otrzymujemy 

następujący obraz;

1. L = /2

2. L = 

3. L = 3 /2

Tabelka pokazuje 

podstawowe drgania 

własne układu (struny).

Fala stojąca



Wróćmy do równania fali stojącej. Możemy z tego równana 

znaleźć warunek na występowanie minimalnych amplitud –

węzłów, oraz maksymalnych amplitud – strzałek. 

Poniższy rysunek przedstawia powstawanie fali stojącej.

Fala stojąca



/2

strzałki            węzły

Położenie węzłów wyznaczymy z równania:

cos( ) 0 0,1,2,
2 2 2

kx kx n n
  

      

Fala stojąca



Fala stojąca



Fala stojąca



Położenie węzłów otrzymamy więc dla następującego warunku

(2 1)

2

n
x

k

  
 .

W podobny sposób możemy wyliczyć warunek na występowanie 

strzałek. Otrzymamy wtedy;

2

2

n
x

k

 
 .

(11.21)

(11.22)

W oparciu o powyższe wzory możemy wyliczyć odległości pomiędzy 

kolejnymi węzłami lub strzałkami. 

Fale stojące mogą również posłużyć do uwidocznienia drgań 

własnych w ciałach stałych. Do uwidocznienia tych drgań możemy 

użyć drobinek korka lub piasku.

Fala stojąca



Przykład takich drgań, -figury Chladniego- wzbudzonych na 

tarczy metalowej np. przy pomocy smyczka przedstawia poniższy rysunek.

Fala stojąca



Bardzo często stwierdzamy, że jeśli fala trafia na swojej drodze na jakąś 

przeszkodę, to zauważamy zmianę kierunku ruchu fali za ta przeszkodą. 

Przykładem mogą być fale rozchodzące się w kierunku falochronu z przerwą w 

pewnym miejscu. Przy końcach falochronu widzimy wyraźną zmianę kierunku 

ruchu fali. Zjawisko to nazywamy ugięciem fali. 

Ugięcie fali możemy 

wyjaśnić zasadą Huygensa.

Mówi ona, że

Każdy punkt do którego dotarła 

fala staje się źródłem

nowej elementarnej fali kulistej.

Ugięcie fal



Obwiednia tych fal elementarnych definiuje nam falę w czasie późniejszym.

Poniższy rysunek pokazuje rozprzestrzenianie się fali płaskiej.

przeszkoda

czoło fali 

dla czasu t

czoło fali dla czasu t 

+t

czoło fali dla czasu t 

+(n=3)t

Ugięcie fal



Przy rozchodzeniu się fal istotne są zjawiska zachodzące na granicy 

dwóch ośrodków. Należą do nich;

1. Załamanie fali,

2. Odbicie fal

Procesy te zależą od własności graniczących ośrodków, a w 

szczególności od prędkości rozchodzenia się fal w tych ośrodkach.

W przypadku, gdy prędkość rozchodzenia się fal zależy od częstości 

fali, mamy do czynienia ze zjawiskiem dyspersji. 

Dyspersja w istotny sposób zmienia obraz interferencji.

Dyspersja



Fala płaska o postaci matematycznej

( , ) cos( )x t A t kx  
,

rozprzestrzenia się do nieskończoności zarówno w czasie jak i przestrzeni. 

Rzeczywiste fale fizyczne z którymi spotykamy się na co dzień są 

ograniczone czasowo i przestrzennie. Dotyczy to np. fal przenoszących 

informacje.

Fale te rozchodzą się w tzw. paczkach falowych.



x

Rysunek obok przedstawia 

taką paczkę.

Prędkość grupowa



Pokazana paczka falowa nie da się opisać przez podane równanie. Jest ona 

bowiem sumą fal o różnych długościach.

Podstawowe własności paczki falowej możemy prześledzić w oparciu o  

zjawisko dudnień, które powstaje, gdy nakładają się dwie fale o lekko 

różniących się częstościach i długościach fal.

1 1 1

2 2 2

( , ) cos( )

( , ) cos( )

x t A t k x

x t A t k x

 

 

 

  .

Po dodaniu tych dwóch fal otrzymujemy;

1 2 2 cos( )cos( )A t kx t kx          . (11.23)

1 2

2

 



 oznacza średnią częstość kołową.

Prędkość grupowa



1 2

2

k k
k


 oznacza średnią liczbę falową.

1 2

2

 



  oraz

1 2

2

k k
k


 

Pozostałe wielkości oznaczają;

.

Pierwszy czynnik w równaniu w równaniu (11.23) przedstawia 

biegnącą falę o częstości i liczbie falowej  bardzo bliskim fali 

wyjściowej. Prędkość fazowa tej fali wynosi;

1 2

1 2

fazv
k k k

  
 


.

Drugi czynnik odpowiada za modulację amplitudy i utworzenie 

paczek falowych, co pokazane jest na następnym rysunku dla 

dwóch następujących po sobie chwil.

Prędkość grupowa



Maksimum paczki falowej pokazuje niebieska kropka, a czerwona kropka 

pokazuje stan o stałej fazie. 

Prędkość grupowa



Stan o stałej fazie spełnia następujące równanie;

( , ) 2 cos( )x t A t k x   

t k x const  

Dla miejsc o stałej fazie otrzymujemy więc; 

t const
x

k

 




Możemy więc już obliczyć prędkość paczki falowej, czyli prędkość 

grupową.

grup

dx d
v

dt k dk

 
  


(11.24)

Pamiętamy, że związek pomiędzy prędkością fazową a 

częstością jest następująca;   = kvfaz .

Prędkość grupowa



Wstawmy to wyrażenie do równania (11.24). Otrzymamy wtedy

( v ) v
v v

faz faz

grup faz

d k dd
k

dk dk dk


   

Ze względu na związek k = 2/, mamy

2

1 2
2 ( )dk d d


 

 
   .

Otrzymujemy wtedy związek pomiędzy prędkością grupową i 

prędkością fazowa.

v
v v

faz

gr faz

d

d



  . (11.25)

Prędkość grupowa



Można pokazać, że każdą funkcję periodyczną czasowo lub 

przestrzennie można przedstawić jako sumę funkcji czysto 

sinusoidalnych.

0 0

1

0

1

( ) sin( )

( ) sin( )

n n

n

n n

n

F x a a n k x

F t b b n t



 









  

  




. (11.26)

Istnieją odpowiednie przepisy matematyczne w jaki sposób 

znaleźć współczynniki an i bn

Rozpatrzmy kilka przebiegów periodycznych. Przebiegi te 

można przedstawić przez pokazane obok funkcje.

Analiza Fouriera



F(x)

x

0 0 0

1 1
( ) sin sin3 sin5

3 5
F x k x k x k x   

0 0 02 2

1 1
( ) sin sin3 sin5

3 5
F x k x k x k x   

0 0 0

1 1
( ) sin sin 2 sin3

2 3
F x k x k x k x   

F(x)

x

F(x)

x



F(t)

t

-1/2

1/2

Rozważmy jeszcze raz ostatni rozkład periodyczny z 

poprzedniej strony, będący tym razem rozkładem czasowym.  

0 0 0

1 1 1
( ) sin( ) sin(2 ) sin(3 )

2 3
F t t t t  

  
   

.
bn

2 4 6

Rysunek ten 

przedstawia 

udział 

poszczególnych 

częstości w 

funkcji F(t).



Dla fizyki szczególnie ważne jest zastosowanie analizy 

Fourierowskiej do analizy zdarzeń nieperiodycznych.

Rozkład częstości dla takich zdarzeń jest ciągły.

Przykład widma częstości dla wystrzału jest pokazane na 

poniższym rysunku. 



bn



p p

V V

c cp RT
v

c c 
  . (11.31)

2. Prędkość dźwięku w pręcie

Prędkość dźwięku w materiałach sprężystych możemy podać

w oparciu o wyprowadzone już w tym rozdziale wyrażenia .

Należy pamiętać, że własności sprężyste ciał stałych opisywane są 

przez wielkości tensorowe. 

W cienkim pręcie prędkość dźwięku wynosi;

E
v


 . (11.32)

W ciele stałym dźwięk może propagować również przez fale

poprzeczne.

Obliczanie prędkości fali
1. Prędkość dźwięku w gazie



Materiał Gestość [kg/m3] Prędkość [m/s]

Powietrze suche –200C 1,396 319

Powietrze suche  00 C 1,293 331

Powietrze suche  200 C 1,21 344

Powietrze suche 1000 C 0,947 387

Wodór  00C 0,090 1260

Para wod. 1300 C 0,54 450

Woda 200 C 998 1480

Lód 920 3200

Drzewo 600 4500

Szkło 2500 5300

Beton 2100 4000

Stal 7700 5050

Prędkość dźwięku w niektórych materiałach



Geometrycznie źródła dźwięku mogą mieć różną postać;

płaszczyzny, prostej, lub punktu. Bardzo często źródłami

dźwięku są wszelkiego rodzaju przetworniki elektroakustyczne

wykorzystujące zmienne pole elektromagnetyczne do wzbudzania drgań 

membran będących źródłem dźwięku.

Najbardziej znanymi źródłami dźwięku są struny głosowe, oraz instrumenty 

muzyczne.  

Drgania napiętej struny, na której powstają fale stojące. 

Mogą być źródłami dźwięku.

L

Źródła dźwięku



Przyrządami, w których powstają fale stojące w drgającym 

słupie powietrza są wszelkiego rodzaju piszczałki

węzłyL

Piszczałki otwarte Piszczałki zamknięte

Zastanówmy się jakie dźwięki możemy uzyskać w piszczałkach.

Źródła dźwięku



Piszczałki otwarte

Drganie podstawowe;

1 węzeł i L = /2

Pierwsze drganie                                

harmoniczne 

2 węzły i L = 

N-te drganie

harmoniczne

L=(n+1) /2=(n+1)v/(2)

n=(n+1) v/L     n=1,2,3,

Piszczałki zamknięte

Drganie podstawowe;

1 węzeł i L = /4

Pierwsze drganie                                

harmoniczne 

2 węzły i L = 3/2

N-te drganie

harmoniczne

L=(n+1) /4=(n+1)2v/(4·2)

n=(2n+1) v/L     n=0,1,2,



Dźwięki, które słyszymy możemy scharakteryzować przez trzy następujące 

parametry;

1. Wysokość dźwięku, za którą odpowiedzialna jest częstość 

drgań,

2. Głośność dźwięku, za którą jest odpowiedzialna jest 

amplituda drgań,

3. Barwa dźwięku, za która jest odpowiedzialna kompozycja

różnych częstości

Wysokość dźwięku możemy ocenić przez porównanie go z tonem 

wzorcowym.

Głośność dźwięku zależy od natężenia dźwięku, czyli od kwadratu 

amplitudy drgań.

Percepcja dźwięku



Barwa dźwięku



Ucho ludzkie ze względu na swoje fizjologiczne własności nie odbiera 

jednakowo dźwięków o tym samym natężeniu lecz o różnej częstości. 

Dźwięków o częstościach niższych od 16Hz i wyższych od 20 kHz nie 

słyszymy w ogóle.

Za wzorcową przyjmujemy głośność dźwięku o częstości        1 kHz i 

natężeniu I0 = 10-12 W/m2 co odpowiada progowi słyszalności dla tej 

częstości.

Głośność dźwięku o tej samej częstości i innym natężeniu I wyznaczamy w 

oparciu o prawo Webera-Fechnera.

0

10log
I

I
 

(11.33).

 wyraża się w decybelach [db].

Głośność dźwięku o innej częstości porównujemy z głośnością dźwięku o 

częstości 1kHz a wynik podajemy w fonach.

Percepcja dźwięku



Poniższy rysunek przedstawia orientacyjny przebieg głośności w zakresie 

najlepszej słyszalności.
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Percepcja dźwięku



Jeżeli źródło emitujące falę oraz obserwator znajdują się względem  siebie w 

ruchu, obserwator zaobserwuje falę o częstości zmienionej zm w stosunki do 

częstości emitowanej przez źródło z. Taką zmianę częstości możemy często 

zauważyć w ruchu ulicznym np. w czasie przejeżdżania obok nas  karetki na 

sygnale. Dla fal dźwiękowych efekt ten został po raz pierwszy zauważony przez 

Christiana Dopplera 1842 r.

Doppler wynajął na dwa dni pociąg towarowy i grupę trębaczy z wiedeńskiej 

orkiestry. Połowę muzyków umieścił w pociągu, a drugą na stacji. Obydwie 

grupy trąbiły w tej samej tonacji. Muzycy byli oczywiście

w stanie określić wysokość słyszanego dźwięku. 

Efekt Dopplera



Efekt Dopplera



Efekt Dopplera



Efekt Dopplera

• Wartość zmiany częstotliwości zależy od ruchu obserwatora i 

źródła dźwięku względem ośrodka, a nie tylko od wzajemnego 

ruchu źródła i obserwatora. Dlatego prędkości źródła i 

obserwatora nie możemy traktować zamiennie
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Poniższa tabela pokazuje wszystkie cztery możliwości.
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źródło obserwator

Efekt Dopplera



Co dzieje się gdy prędkość źródła dźwięku vzr jest równa  prędkości

dźwięku u.   Powstaje wtedy fala uderzeniowa. Następuje 

kumulacja energii na czole fali. Natężenie rośnie do .

Czoło fali

vzr

Przykład ---- lecący pocisk o

prędkości vzr= 1.01 u.

Prędkości naddźwiękowe



Prędkości naddźwiękowe



F/A Hornet przekraczający

Barierę dźwięku



Kiedy obiekt emitujący dźwięk ma prędkość większą od prędkości

rozchodzenia się dźwięku, płaskie czoło fali uderzeniowej zmienia

się w stożek. Również energia koncentruje się na powierzchni 

Stożka. Połowa kąta rozwarcia stożka jest 

dana przez;

1
sin

vzr

u

M
  

.

M jest nazwane liczbą Macha.

vzr

vzr T

Świetlne fale uderzeniowe również 

istnieją w ośrodkach o współczynniku

załamania n >1 co zmniejsza 

prędkość światła w stosunku do tej

w próżni. Powstające świetlne fale 

uderzeniowe nazywamy 

promieniowaniem Cerenkova.

Prędkości naddźwiękowe


